Categorical representability and rationality

Marcello Bernardara

Institut de Mathématiques de Toulouse

Marcello Bernardara (IMT)

э

Semiorthogonal decompositions

- k is a field
- X a smooth and projective k-variety of dimension n
- $\mathbf{D}^{\mathrm{b}}(X)$ is a *k*-linear triangulated category

(nonsmooth cases = replace with categorical resolutions of singularities)

イロト 不同 トイヨト イヨト

Semiorthogonal decompositions

- k is a field
- X a smooth and projective k-variety of dimension n
- $\mathbf{D}^{\mathrm{b}}(X)$ is a *k*-linear triangulated category

(nonsmooth cases = replace with categorical resolutions of singularities)

Definition

A semiorthogonal decomposition of $\mathbf{D}^{\mathrm{b}}(X)$ is a set $\mathbf{A}_1, \ldots, \mathbf{A}_r$ s.t.:

- $A_i \subset D^{b}(X)$ is admissible (i.e. full, thick and with adjoints)
- $\operatorname{Hom}_{\mathbf{D}^{\mathrm{b}}(X)}(A_j, A_i) = 0$ for all j > i, and A_* in \mathbf{A}_*
- $\mathbf{D}^{\mathrm{b}}(X)$ is the smallest triangulated category containing the \mathbf{A}_i 's.

We write: $\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_1, \ldots, \mathbf{A}_r \rangle$.

Exceptional objects

Definition

For a simple k-algebra A, an object E in $\mathbf{D}^{\mathrm{b}}(X)$ is A-exceptional if

• $\operatorname{Hom}_{\mathbf{D}^{\mathrm{b}}(X)}(E, E) = A$

•
$$\operatorname{Hom}_{\mathbf{D}^{\mathrm{b}}(X)}(E, E[i]) = 0$$
 for $i \neq 0$

A sequence E_1, \ldots, E_r is exceptional if E_i is A_i -exceptional for all i and

• $\operatorname{Hom}_{\mathbf{D}^{\mathrm{b}}(X)}(E_j, E_i[I]) = 0$ for j > i and all I.

Exceptional objects

Definition

For a simple k-algebra A, an object E in $\mathbf{D}^{\mathrm{b}}(X)$ is A-exceptional if

• $\operatorname{Hom}_{\mathbf{D}^{\mathrm{b}}(X)}(E, E) = A$

•
$$\operatorname{Hom}_{\mathbf{D}^{\mathrm{b}}(X)}(E, E[i]) = 0$$
 for $i \neq 0$

A sequence E_1, \ldots, E_r is exceptional if E_i is A_i -exceptional for all i and • Hom_{D^b(X)} $(E_j, E_i[I]) = 0$ for j > i and all I.

Example. If X is Fano of index *i*, any line bundle is *k*-exceptional, and $\mathcal{O}, \ldots, \mathcal{O}(i-1)$ is an exceptional sequence.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Exceptional collections and Semiorthogonal decompositions

If *E* is *A*-exceptional in $\mathbf{D}^{\mathrm{b}}(X)$, then $\langle E \rangle \simeq \mathbf{D}^{\mathrm{b}}(A)$ is an admissible subcategory in $\mathbf{D}^{\mathrm{b}}(X)$.

イロト 不同 トイヨト イヨト

Exceptional collections and Semiorthogonal decompositions

If *E* is *A*-exceptional in $\mathbf{D}^{\mathrm{b}}(X)$, then $\langle E \rangle \simeq \mathbf{D}^{\mathrm{b}}(A)$ is an admissible subcategory in $\mathbf{D}^{\mathrm{b}}(X)$.

If E_1, \ldots, E_r is an exc. sequence, then $\langle E_1 \rangle, \ldots, \langle E_r \rangle$ are semiorthogonal.

イロト 不得 トイヨト イヨト 二日

Exceptional collections and Semiorthogonal decompositions

If *E* is *A*-exceptional in $\mathbf{D}^{\mathrm{b}}(X)$, then $\langle E \rangle \simeq \mathbf{D}^{\mathrm{b}}(A)$ is an admissible subcategory in $\mathbf{D}^{\mathrm{b}}(X)$.

If E_1, \ldots, E_r is an exc. sequence, then $\langle E_1 \rangle, \ldots, \langle E_r \rangle$ are semiorthogonal.

There is a semiorthogonal decomposition:

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}, E_1, \dots, E_r \rangle$$

where **A** is the category of objects left-orthogonal to the E_i 's.

Fanos of Picard rank one

Let X be a Fano variety of Picard rank one and index i. Then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_X, \mathcal{O}, \dots, \mathcal{O}(i-1) \rangle.$$

э

프 : : : : : :

A
 A

Fanos of Picard rank one

Let X be a Fano variety of Picard rank one and index i. Then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_X, \mathcal{O}, \dots, \mathcal{O}(i-1) \rangle.$$

Mori fibrations

Let $p: X \to Y$ be a Mori fibration of relative index *i*. Then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_{X/Y}, p^* \mathbf{D}^{\mathrm{b}}(Y), \dots, p^* \mathbf{D}^{\mathrm{b}}(Y)(i-1) \rangle.$$

イロト 不得 とうせい かほとう ほ

Fanos of Picard rank one

Let X be a Fano variety of Picard rank one and index i. Then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_X, \mathcal{O}, \dots, \mathcal{O}(i-1) \rangle.$$

Mori fibrations

Let $p: X \to Y$ be a Mori fibration of relative index *i*. Then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_{X/Y}, p^* \mathbf{D}^{\mathrm{b}}(Y), \dots, p^* \mathbf{D}^{\mathrm{b}}(Y)(i-1)
angle.$$

Blow up

If $X \to Y$ is the blow-up along a smooth Z of codimension d, then:

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{D}^{\mathrm{b}}(Y), \mathbf{D}^{\mathrm{b}}(Z)_1, \dots, \mathbf{D}^{\mathrm{b}}(Z)_{d-1} \rangle.$$

Marcello Bernardara (IMT)

э

Mori fibrations

Let $p: X \to Y$ be a Mori fibration of relative index *i*. Then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_{X/Y}, p^* \mathbf{D}^{\mathrm{b}}(Y), \dots, p^* \mathbf{D}^{\mathrm{b}}(Y)(i-1)
angle.$$

- [Beilinson, Orlov] if p is a projective bundle, then $\mathbf{A}_{X/Y} = 0$
- [Kuznetsov] if p is a quadric fibration, then $\mathbf{A}_{X/Y} = \mathbf{D}^{\mathrm{b}}(Y, \mathcal{C}_0)$, where \mathcal{C}_0 is the even Clifford algebra of p.

< ロ > < 同 > < 回 > < 回 > < □ > <

Categorical Representability

Definition

We say that X is categorically representable in dimension m (or equivalently in codimension $\dim (X) - m$) if there is a semiorthogonal decomposition

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{A}_1, \dots, \mathbf{A}_r \rangle,$$

and smooth projective Y_1, \ldots, Y_r of dimension $\leq m$ such that A_i is admissible in $D^{\mathrm{b}}(Y_i)$.

We will use the following notations:

$$\operatorname{Rep}_{\operatorname{cat}}(X) := \{ \min \ m | X \text{ is c.rep. in } \dim \ m \} \\ \operatorname{coRep}_{\operatorname{cat}}(X) := \dim (X) - \operatorname{Rep} \mathbf{D}^{\operatorname{b}}(X),$$

and note that $\operatorname{Rep}_{\operatorname{cat}}(\mathbb{P}^n) = 0$ for any *n*, for any *k*.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Question. Does X rational imply $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$?

э

イロト イポト イヨト イヨト

Question. Does X rational imply $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$? Results.

• [Auel,-]: If X is a del Pezzo surface, yes, and the converse also holds.

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Question. Does X rational imply $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$? Results.

- [Auel,-]: If X is a del Pezzo surface, yes, and the converse also holds.
- adapt from [Vial]: If X is a surface, $\operatorname{Rep}_{\operatorname{cat}}(X) = 0$ is strictly stronger than having a decomposition of the diagonal.

< ロ > < 同 > < 回 > < 回 > < □ > <

Question. Does X rational imply $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$? Results.

- [Auel,-]: If X is a del Pezzo surface, yes, and the converse also holds.
- adapt from [Vial]: If X is a surface, $\operatorname{Rep}_{\operatorname{cat}}(X) = 0$ is strictly stronger than having a decomposition of the diagonal.
- [-,Bolognesi]: If $k = \mathbb{C}$, X is a threefold, and J(X) is a ppav, $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$ gives J(X) split by curves.

イロト 不得 トイヨト イヨト 二日

Question. Does X rational imply $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$? Results.

- [Auel,-]: If X is a del Pezzo surface, yes, and the converse also holds.
- adapt from [Vial]: If X is a surface, $\operatorname{Rep}_{\operatorname{cat}}(X) = 0$ is strictly stronger than having a decomposition of the diagonal.
- [-,Bolognesi]: If $k = \mathbb{C}$, X is a threefold, and J(X) is a ppav, $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$ gives J(X) split by curves.
- [-]: If X is the Artin-Mumford double solid, then $\operatorname{Rep}_{\operatorname{cat}}(X) = 2$.

イロト 不得 とうせい かほとう ほ

Question. Does X rational imply $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$? Results.

- [Auel,-]: If X is a del Pezzo surface, yes, and the converse also holds.
- adapt from [Vial]: If X is a surface, $\operatorname{Rep}_{\operatorname{cat}}(X) = 0$ is strictly stronger than having a decomposition of the diagonal.
- [-,Bolognesi]: If $k = \mathbb{C}$, X is a threefold, and J(X) is a ppav, $\operatorname{coRep}_{\operatorname{cat}}(X) \ge 2$ gives J(X) split by curves.
- [-]: If X is the Artin-Mumford double solid, then $\operatorname{Rep}_{\operatorname{cat}}(X) = 2$.

In all the Mori fiber space cases, the relevant information is in $A_{X/Y}$.

The ring of triangulated categories

From now on, k has weak factorization.

э

< A >

The ring of triangulated categories

From now on, k has weak factorization.

PT(k) is the \mathbb{Z} -module generated by triangulated categories **A** which are admissible in some $\mathbf{D}^{\mathrm{b}}(X)$, where we set

$$C = A + B$$
 if $C = \langle A, B \rangle$.

The product on PT(k) is induced by $\mathbf{D}^{\mathbf{b}}(X) \bullet \mathbf{D}^{\mathbf{b}}(Y) = \mathbf{D}^{\mathbf{b}}(X \times Y)$, whence PT(k) is a commutative ring with unit $\mathbf{e} = \mathbf{D}^{\mathbf{b}}(k)$.

イロト 不得 トイヨト イヨト 二日

The ring of triangulated categories

From now on, k has weak factorization.

PT(k) is the \mathbb{Z} -module generated by triangulated categories **A** which are admissible in some **D**^b(X), where we set

$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$
 if $\mathbf{C} = \langle \mathbf{A}, \mathbf{B}
angle.$

The product on PT(k) is induced by $\mathbf{D}^{\mathbf{b}}(X) \bullet \mathbf{D}^{\mathbf{b}}(Y) = \mathbf{D}^{\mathbf{b}}(X \times Y)$, whence PT(k) is a commutative ring with unit $\mathbf{e} = \mathbf{D}^{\mathbf{b}}(k)$.

Categorical representability induces a ring filtration:

$$\mathsf{PT}_d(k) := \langle \mathbf{D}^{\mathrm{b}}(X) \mid \operatorname{Rep}_{\operatorname{cat}}(X) \leq d
angle^+$$

It is not know whether $\mathbf{D}^{\mathrm{b}}(X) \in PT_d(k)$ implies $\operatorname{Rep}_{\operatorname{cat}}(X) \leq d$.

Example We note that $\mathbf{D}^{\mathrm{b}}(\mathbb{P}^n) \in PT_0(k)$ for all n.

Motivic measures

Suppose k has weak factorization.

æ

・ロト ・回ト ・ヨト ・ヨト

Motivic measures

Suppose k has weak factorization.

The Grothendieck ring of varieties $K_0(Var(k))$ is the \mathbb{Z} -module generated by smooth and proper varieties where we set

[X] - [Z] = [Y] - [E]

if $Y \to X$ is the blow up of Z with exceptional divisor E.

イロト 不得 とうせい かほとう ほ

Motivic measures

Suppose k has weak factorization.

The Grothendieck ring of varieties $K_0(Var(k))$ is the \mathbb{Z} -module generated by smooth and proper varieties where we set

$$[X] - [Z] = [Y] - [E]$$

if $Y \to X$ is the blow up of Z with exceptional divisor E.

A motivic measure is a ring homomorphism $K_0(Var(k)) \to R$.

We set $\mathbb{L} := [\mathbb{A}^1]$ the class of the affine line and note that $[\mathbb{P}^n] = \sum_{i=0}^n \mathbb{L}^i$.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Bondal-Larsen-Lunts and Larsen-Lunts measures

Larsen-Lunts' Measure

$$\mu: K_0(\operatorname{Var}(k)) \to SB(k)$$

sending [X] to its stably birational equivalence class is a motivic measure whose kernel is the ideal $\langle \mathbb{L} \rangle$.

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Bondal-Larsen-Lunts and Larsen-Lunts measures

Larsen-Lunts' Measure

$$\mu: K_0(\operatorname{Var}(k)) \to SB(k)$$

sending [X] to its stably birational equivalence class is a motivic measure whose kernel is the ideal $\langle \mathbb{L} \rangle$.

Bondal-Larsen-Lunts' measure

$$\nu: K_0(\operatorname{Var}(k)) \to PT(k)$$

sending $[X] \rightarrow \mathbf{D}^{\mathrm{b}}(X)$ is a motivic measure.

Note that $\nu(\mathbb{L}) = \mathbf{e}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

The noncommutative motivic rational defect

By Larsen-Lunts, and weak factorization, if X is rational, then:

$$[X] = [\mathbb{P}^n] + \mathbb{L} \sum M_X$$

in $K_0(Var(k))$, where M_X are classes of varieties of dimension $\leq n-2$.

イロト 不得 とうせい かほとう ほ

The noncommutative motivic rational defect

By Larsen-Lunts, and weak factorization, if X is rational, then:

$$[X] = [\mathbb{P}^n] + \mathbb{L} \sum M_X$$

in $K_0(Var(k))$, where M_X are classes of varieties of dimension $\leq n-2$. Applying ν , we obtain:

Proposition

If X rational then $\mathbf{D}^{\mathrm{b}}(X)$ is in $PT_{n-2}(k)$.

Proposition

Let $X \to Y$ be a Mori fibration with either Y rational or dim $(Y) \le n-2$. $\mathbf{D}^{\mathrm{b}}(X)$ is in $PT_{n-2}(k)$ if and only if $\mathbf{A}_{X/Y}$ is in $PT_{n-2}(k)$.

Categorical represented in low dimensions

Proposition

For any k, a k-linear triangulated category **A** is representable in dimension 0 if and only if there exists an étale k-algebra K and $\mathbf{A} \simeq \mathbf{D}^{\mathrm{b}}(K)$

Categorical represented in low dimensions

Proposition

For any k, a k-linear triangulated category **A** is representable in dimension 0 if and only if there exists an étale k-algebra K and $\mathbf{A} \simeq \mathbf{D}^{\mathrm{b}}(K)$

Proposition (Okawa)

For $k = \overline{k}$, a k-linear triangulated **A** is representable in dimension 1 but not 0 if and only if there is a smooth projective curve of genus g > 0 such that $\mathbf{A} \simeq \mathbf{D}^{\mathrm{b}}(C)$.

Note. A complete classification holds for any *k* as well.

イロト 不得 トイヨト イヨト 二日

k is any field, S a del Pezzo surface.

Theorem (Auel-B, 2015)

S is rational if and only if $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ if and only if **A**_S is representable in dimension 0.

▶ < ∃ ▶

k is any field, S a del Pezzo surface.

Theorem (Auel-B, 2015)

S is rational if and only if $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ if and only if **A**_S is representable in dimension 0.

There exists a well-defined category \mathbf{GK}_S which is a birational invariant. It is trivial if and only if S is rational.

k is any field, S a del Pezzo surface.

Theorem (Auel-B, 2015)

S is rational if and only if $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ if and only if **A**_S is representable in dimension 0.

There exists a well-defined category \mathbf{GK}_S which is a birational invariant. It is trivial if and only if S is rational.

If deg(S) \geq 5, then there are two vector bundles V₁, V₂ such that $A_i := \text{End}(V_i)$ is semisimple and controls the birational geometry of S: from $c_2(V_i)$ and A_i we can construct **GK**_S, and we can calculate the (arithmetical) index of S.

Sketch of the proof.

• If S is minimal, then $K_0(S) \simeq \mathbb{Z}^3$, then $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ implies $\mathbf{D}^{\operatorname{b}}(S) = \langle \mathbf{D}^{\operatorname{b}}(I_1), \mathbf{D}^{\operatorname{b}}(I_2), \mathbf{D}^{\operatorname{b}}(I_3) \rangle$ with I_i/k finite extension.

・ロト ・回ト ・ヨト ・ヨト

Sketch of the proof.

- If S is minimal, then $K_0(S) \simeq \mathbb{Z}^3$, then $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ implies $\mathbf{D}^{\operatorname{b}}(S) = \langle \mathbf{D}^{\operatorname{b}}(I_1), \mathbf{D}^{\operatorname{b}}(I_2), \mathbf{D}^{\operatorname{b}}(I_3) \rangle$ with I_i/k finite extension.
- It follows that there is an exceptional collection of D^b(S) in three blocks (chunks of mutually orthogonal exceptional bundles).

・ロト ・回ト ・ヨト ・ヨト

Sketch of the proof.

- If S is minimal, then $K_0(S) \simeq \mathbb{Z}^3$, then $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ implies $\mathbf{D}^{\operatorname{b}}(S) = \langle \mathbf{D}^{\operatorname{b}}(I_1), \mathbf{D}^{\operatorname{b}}(I_2), \mathbf{D}^{\operatorname{b}}(I_3) \rangle$ with I_i/k finite extension.
- It follows that there is an exceptional collection of D^b(S) in three blocks (chunks of mutually orthogonal exceptional bundles).
- Karpov-Nogin et al. showed that there are only a finite number of such collections and that they are made of vector bundles. Consider the vector bundles V₁, V₂ and V₃ generating each block.

イロト 不得 トイヨト イヨト 二日

Sketch of the proof.

- If S is minimal, then $K_0(S) \simeq \mathbb{Z}^3$, then $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ implies $\mathbf{D}^{\operatorname{b}}(S) = \langle \mathbf{D}^{\operatorname{b}}(I_1), \mathbf{D}^{\operatorname{b}}(I_2), \mathbf{D}^{\operatorname{b}}(I_3) \rangle$ with I_i/k finite extension.
- It follows that there is an exceptional collection of D^b(S) in three blocks (chunks of mutually orthogonal exceptional bundles).
- Karpov-Nogin et al. showed that there are only a finite number of such collections and that they are made of vector bundles. Consider the vector bundles V₁, V₂ and V₃ generating each block.
- The descent of V_i's contradicts minimality if deg(S) ≤ 4, and in this case S is never rational. We set GK_S := A_S = ⟨O⟩[⊥].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Sketch of the proof.

- If S is minimal, then $K_0(S) \simeq \mathbb{Z}^3$, then $\operatorname{Rep}_{\operatorname{cat}}(S) = 0$ implies $\mathbf{D}^{\operatorname{b}}(S) = \langle \mathbf{D}^{\operatorname{b}}(I_1), \mathbf{D}^{\operatorname{b}}(I_2), \mathbf{D}^{\operatorname{b}}(I_3) \rangle$ with I_i/k finite extension.
- It follows that there is an exceptional collection of D^b(S) in three blocks (chunks of mutually orthogonal exceptional bundles).
- Karpov-Nogin et al. showed that there are only a finite number of such collections and that they are made of vector bundles. Consider the vector bundles V₁, V₂ and V₃ generating each block.
- The descent of V_i's contradicts minimality if deg(S) ≤ 4, and in this case S is never rational. We set GK_S := A_S = ⟨O⟩[⊥].
- If deg(S) ≥ 5, we have V₃ = O, and V₁ and V₂ always descend, and X is rational if and only if End(V_i) is étale. We set GK_S to be the product of derived categories of those non-étale algebras.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Amitsur-type consequences

Proposition (Antieau)

If A, B are simple k-algebras with centers I_A and I_B , then $\mathbf{D}^{\mathrm{b}}(A) \simeq \mathbf{D}^{\mathrm{b}}(B)$ if and only if $I_A \simeq I_2$ and A and B have the same class in $\mathrm{Br}(I_A)$.

If S is minimal of degree deg(S) \geq 5 the Brauer classes of A₁ and A₂ are a birational invariant.

< ロ > < 同 > < 回 > < 回 > < □ > <

Amitsur-type consequences

Proposition (Antieau)

If A, B are simple k-algebras with centers I_A and I_B , then $\mathbf{D}^{\mathrm{b}}(A) \simeq \mathbf{D}^{\mathrm{b}}(B)$ if and only if $I_A \simeq I_2$ and A and B have the same class in $\mathrm{Br}(I_A)$.

If S is minimal of degree deg(S) \geq 5 the Brauer classes of A₁ and A₂ are a birational invariant.

Brauer-Severi case

If S = BS(A) is a Brauer–Severi surface, and A has order 3. We have

$$A_1 = A \quad , \ A_2 = A^2$$

so that our result is the Amitsur conjecture for surfaces.

イロト 不得 トイヨト イヨト 二日

Proposition (Vial)

Let S be a surface such that $\mathbf{D}^{\mathrm{b}}(S)$ is generated by k-exc. objects. Then S has an integral decomposition of the diagonal.

(*) *) *) *)

Proposition (Vial)

Let S be a surface such that $\mathbf{D}^{\mathrm{b}}(S)$ is generated by k-exc. objects. Then S has an integral decomposition of the diagonal.

Recall: the latter means that there is a zero-cycle p on S such that $\Delta = p \times S + Z$ in $CH_2(S \times S)_{\mathbb{Z}}$ with Z supported on $S \times V$ and $\dim(V) < 2$. It is a necessary (but not sufficient) condition for stable rationality.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Proposition (Vial)

Let S be a surface such that $\mathbf{D}^{\mathrm{b}}(S)$ is generated by k-exc. objects. Then S has an integral decomposition of the diagonal.

Definition

An admissible subcategory **A** of some $D^{b}(X)$ is a phantom if $K_{0}(\mathbf{A}) = 0$ and $HH_{*}(\mathbf{A}) = 0$.

Proposition

Let S be a surface with a semiorthogonal decomposition

 $\langle \mathbf{A}, E_1, \ldots, E_r \rangle,$

with E_i are k-exceptional and **A** a phantom. Then S has an integral decomposition of the diagonal.

Sketch of the proof.

• If $\chi(\mathcal{O}_S) = 1$ and $\mathcal{K}_0(S)_{\mathbb{Z}} \simeq \mathbb{Z}^n$ is generated by χ -semiorthogonal objects, then S a 0-cycle a of degree 1.

・ロト ・得ト ・ヨト ・ヨト

Sketch of the proof.

- If $\chi(\mathcal{O}_S) = 1$ and $K_0(S)_{\mathbb{Z}} \simeq \mathbb{Z}^n$ is generated by χ -semiorthogonal objects, then S a 0-cycle a of degree 1.
- Under these assumptions $CH_0(S) = \mathbb{Z}[a]$, and $CH_1(S) = Pic(S)$. Moreover, $K_0(S) \simeq CH_*(S)$ as a \mathbb{Z} -module.

イロト 不得 トイヨト イヨト 二日

Sketch of the proof.

- If $\chi(\mathcal{O}_S) = 1$ and $\mathcal{K}_0(S)_{\mathbb{Z}} \simeq \mathbb{Z}^n$ is generated by χ -semiorthogonal objects, then S a 0-cycle a of degree 1.
- Under these assumptions $CH_0(S) = \mathbb{Z}[a]$, and $CH_1(S) = Pic(S)$. Moreover, $K_0(S) \simeq CH_*(S)$ as a \mathbb{Z} -module.
- Via GRR, transform the matrix of the bilinear form χ into the matrix of the intersection form on Pic(S). From the χ -semiorthogonality, we have a natural base D_i and unimodularity.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Sketch of the proof.

- If $\chi(\mathcal{O}_S) = 1$ and $K_0(S)_{\mathbb{Z}} \simeq \mathbb{Z}^n$ is generated by χ -semiorthogonal objects, then S a 0-cycle a of degree 1.
- Under these assumptions $CH_0(S) = \mathbb{Z}[a]$, and $CH_1(S) = Pic(S)$. Moreover, $K_0(S) \simeq CH_*(S)$ as a \mathbb{Z} -module.
- Via GRR, transform the matrix of the bilinear form χ into the matrix of the intersection form on Pic(S). From the χ -semiorthogonality, we have a natural base D_i and unimodularity.
- there are orthogonal projectors a × S, S × a and D_i × D_i[∨], whose orthogonal is a idempotent cycle z on S × S.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Sketch of the proof.

- If χ(O_S) = 1 and K₀(S)_ℤ ≃ ℤⁿ is generated by χ-semiorthogonal objects, then S a 0-cycle a of degree 1.
- Under these assumptions $CH_0(S) = \mathbb{Z}[a]$, and $CH_1(S) = Pic(S)$. Moreover, $K_0(S) \simeq CH_*(S)$ as a \mathbb{Z} -module.
- Via GRR, transform the matrix of the bilinear form χ into the matrix of the intersection form on Pic(S). From the χ -semiorthogonality, we have a natural base D_i and unimodularity.
- there are orthogonal projectors a × S, S × a and D_i × D[∨]_i, whose orthogonal is a idempotent cycle z on S × S.
- Base changing to any field, we obtain that the action of z is trivial on $CH_*(S_K)$, hence z is nilpotent, hence trivial.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Sketch of the proof.

- If χ(O_S) = 1 and K₀(S)_ℤ ≃ ℤⁿ is generated by χ-semiorthogonal objects, then S a 0-cycle a of degree 1.
- Under these assumptions $CH_0(S) = \mathbb{Z}[a]$, and $CH_1(S) = Pic(S)$. Moreover, $K_0(S) \simeq CH_*(S)$ as a \mathbb{Z} -module.
- Via GRR, transform the matrix of the bilinear form χ into the matrix of the intersection form on Pic(S). From the χ -semiorthogonality, we have a natural base D_i and unimodularity.
- there are orthogonal projectors a × S, S × a and D_i × D[∨]_i, whose orthogonal is a idempotent cycle z on S × S.
- Base changing to any field, we obtain that the action of z is trivial on $CH_*(S_K)$, hence z is nilpotent, hence trivial.
- Conclusion: $\Delta = a \times S + S \times a + \sum D_i \times D_i^{\vee}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

 $k = \mathbb{C}$. Let X be a Fano threefold, or a conic bundle over a a rational surface, or a del Pezzo fibration over \mathbb{P}^1 .

3

イロト 不同 トイヨト イヨト

 $k = \mathbb{C}$. Let X be a Fano threefold, or a conic bundle over a a rational surface, or a del Pezzo fibration over \mathbb{P}^1 .

[Clemens-Griffiths] There is a ppav $A_X \subset J(X)$ (the *Griffths component*) which is a birational invariant, and $A_{\mathbb{P}^3} = 0$.

Recall: A_X is the maximal ppa subvariety not containing Jacobians of curves.

イロト 不得 トイヨト イヨト 二日

 $k = \mathbb{C}$. Let X be a Fano threefold, or a conic bundle over a a rational surface, or a del Pezzo fibration over \mathbb{P}^1 .

[Clemens-Griffiths] There is a ppav $A_X \subset J(X)$ (the *Griffths component*) which is a birational invariant, and $A_{\mathbb{P}^3} = 0$.

Proposition (-,Bolognesi, 2011)

Suppose that X has J(X) ppav with an incidence polarization. In this case if $\operatorname{Rep}_{\operatorname{cat}}(X) \leq 1$ we have $A_X = 0$.

《曰》《聞》 《臣》 《臣》

 $k = \mathbb{C}$. Let X be a Fano threefold, or a conic bundle over a a rational surface, or a del Pezzo fibration over \mathbb{P}^1 .

[Clemens-Griffiths] There is a ppav $A_X \subset J(X)$ (the *Griffths component*) which is a birational invariant, and $A_{\mathbb{P}^3} = 0$.

Proposition (-,Bolognesi, 2011)

Suppose that X has J(X) ppav with an incidence polarization. In this case if $\operatorname{Rep}_{\operatorname{cat}}(X) \leq 1$ we have $A_X = 0$.

- having an incidence polarization is known in almost all cases.
- [-,Tabuada 2014] For a Mori fiber space $X \to Y$ as above, there is a well defined Jacobian $J(\mathbf{A}_{X/Y})$ as ppav, and $J(\mathbf{A}_{X/Y}) = J(X)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Sketch of the proof.

 If there is a curve C such that D^b(C) → D^b(X) is admissible, then the functor is Fourier–Mukai, i.e. there is an object E in D^b(X × C) representing it.

문▶ ★ 문▶

Sketch of the proof.

- If there is a curve C such that D^b(C) → D^b(X) is admissible, then the functor is Fourier–Mukai, i.e. there is an object E in D^b(X × C) representing it.
- Such a functor has a right adjoint, which is represented by the object $\mathcal{E} \otimes \omega_X$. Their composition is the identity functor of $\mathbf{D}^{\mathrm{b}}(C)$.

Sketch of the proof.

- If there is a curve C such that D^b(C) → D^b(X) is admissible, then the functor is Fourier–Mukai, i.e. there is an object E in D^b(X × C) representing it.
- Such a functor has a right adjoint, which is represented by the object $\mathcal{E} \otimes \omega_X$. Their composition is the identity functor of $\mathbf{D}^{\mathrm{b}}(C)$.
- We consider $e := ch_3(\mathcal{E})$ in $CH_3(X \times C)$. A motivic argument, shows that e induces an injective map $\phi : J(C) \to J(X)$ of abelian varieties with finite kernel.

・ロト ・同ト ・ヨト ・ヨト

Sketch of the proof.

- If there is a curve C such that D^b(C) → D^b(X) is admissible, then the functor is Fourier–Mukai, i.e. there is an object E in D^b(X × C) representing it.
- Such a functor has a right adjoint, which is represented by the object $\mathcal{E} \otimes \omega_X$. Their composition is the identity functor of $\mathbf{D}^{\mathrm{b}}(C)$.
- We consider $e := ch_3(\mathcal{E})$ in $CH_3(X \times C)$. A motivic argument, shows that e induces an injective map $\phi : J(C) \to J(X)$ of abelian varieties with finite kernel.
- The incidence property shows that ϕ preserve the principal polarization (and the kernel is trivial).

イロト 不得 トイヨト イヨト 二日

Sketch of the proof.

- If there is a curve C such that $\mathbf{D}^{\mathrm{b}}(C) \to \mathbf{D}^{\mathrm{b}}(X)$ is admissible, then the functor is Fourier–Mukai, i.e. there is an object \mathcal{E} in $\mathbf{D}^{\mathrm{b}}(X \times C)$ representing it.
- Such a functor has a right adjoint, which is represented by the object $\mathcal{E} \otimes \omega_X$. Their composition is the identity functor of $\mathbf{D}^{\mathrm{b}}(C)$.
- We consider $e := ch_3(\mathcal{E})$ in $CH_3(X \times C)$. A motivic argument, shows that e induces an injective map $\phi : J(C) \to J(X)$ of abelian varieties with finite kernel.
- The incidence property shows that ϕ preserve the principal polarization (and the kernel is trivial).
- If $\operatorname{Rep}_{\operatorname{cat}}(X) = 1$, then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathbf{D}^{\mathrm{b}}(C_1), \dots, \mathbf{D}^{\mathrm{b}}(C_r), E_1, \dots, E_s \rangle$$

so that $CH_*(X)_{alg=0,\mathbb{Q}} = \bigoplus_{i=1^r} \operatorname{Pic}^0(C_i)$ via GRR.

Some converse of the previous theorem is known via explicit examples:

Rational 3folds

• If X is a rational Fano threefold of Picard rank one [Kuznetsov, Orlov]

Some converse of the previous theorem is known via explicit examples:

Rational 3folds

- If X is a rational Fano threefold of Picard rank one [Kuznetsov, Orlov]
- If $X \to Y = \mathbb{P}^1$ is a rational del Pezzo fibration of degree 4 [Auel,-,Bolognesi]

・ロト ・得ト ・ヨト ・ヨト

Some converse of the previous theorem is known via explicit examples:

Rational 3folds

- If X is a rational Fano threefold of Picard rank one [Kuznetsov, Orlov]
- If $X \to Y = \mathbb{P}^1$ is a rational del Pezzo fibration of degree 4 [Auel,-,Bolognesi]
- If $X \to Y$ is a rational conic bundle over a minimal surface [-,Bolognesi]

Then $\operatorname{Rep}_{\operatorname{cat}}(\mathbf{A}_{X/Y}) \leq 1$.

Let $X \to \mathbb{P}^3$ be the Artin-Mumford double solid, and $W \to X$ the blow up of its 10 singular points. W is not rational but J(W) = 0.

Proposition

 $\operatorname{Rep}_{\operatorname{cat}}(W) = 2.$

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Let $X \to \mathbb{P}^3$ be the Artin-Mumford double solid, and $W \to X$ the blow up of its 10 singular points. W is not rational but J(W) = 0.

Proposition

 $\operatorname{Rep}_{\operatorname{cat}}(W) = 2.$

Sketch of proof.

• [Hosono-Takagi] There is an Enriques surface S such that

$$\mathbf{D}^{\mathrm{b}}(W) = \langle \mathbf{D}^{\mathrm{b}}(S), E_1, \ldots, E_{12} \rangle.$$

イロト 不得 トイヨト イヨト 二日

Let $X \to \mathbb{P}^3$ be the Artin-Mumford double solid, and $W \to X$ the blow up of its 10 singular points. W is not rational but J(W) = 0.

Proposition

 $\operatorname{Rep}_{\operatorname{cat}}(W) = 2.$

Sketch of proof.

- [Hosono-Takagi] There is an Enriques surface S such that $\mathbf{D}^{\mathrm{b}}(W) = \langle \mathbf{D}^{\mathrm{b}}(S), E_1, \dots, E_{12} \rangle.$
- $K_0(S)$ is not free of finite rank, so neither is $K_0(W)$, hence $\operatorname{Rep}_{\operatorname{cat}}(W) > 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $X \to \mathbb{P}^3$ be the Artin-Mumford double solid, and $W \to X$ the blow up of its 10 singular points. W is not rational but J(W) = 0.

Proposition

 $\operatorname{Rep}_{\operatorname{cat}}(W) = 2.$

Sketch of proof.

- [Hosono-Takagi] There is an Enriques surface S such that $\mathbf{D}^{\mathrm{b}}(W) = \langle \mathbf{D}^{\mathrm{b}}(S), E_1, \dots, E_{12} \rangle.$
- K₀(S) is not free of finite rank, so neither is K₀(W), hence Rep_{cat}(W) > 0.
- Since J(W) = 0, there is no curve C with $\mathbf{D}^{b}(C)$ admissible in $\mathbf{D}^{b}(X)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $X \to \mathbb{P}^3$ be the Artin-Mumford double solid, and $W \to X$ the blow up of its 10 singular points. W is not rational but J(W) = 0.

Proposition

 $\operatorname{Rep}_{\operatorname{cat}}(W) = 2.$

Sketch of proof.

- [Hosono-Takagi] There is an Enriques surface S such that $\mathbf{D}^{\mathrm{b}}(W) = \langle \mathbf{D}^{\mathrm{b}}(S), E_1, \dots, E_{12} \rangle.$
- K₀(S) is not free of finite rank, so neither is K₀(W), hence Rep_{cat}(W) > 0.
- Since J(W) = 0, there is no curve C with $\mathbf{D}^{b}(C)$ admissible in $\mathbf{D}^{b}(X)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $X \to \mathbb{P}^3$ be the Artin-Mumford double solid, and $W \to X$ the blow up of its 10 singular points. W is not rational but J(W) = 0.

Proposition

 $\operatorname{Rep}_{\operatorname{cat}}(W) = 2.$

Sketch of proof.

- [Hosono-Takagi] There is an Enriques surface S such that $\mathbf{D}^{\mathrm{b}}(W) = \langle \mathbf{D}^{\mathrm{b}}(S), E_1, \dots, E_{12} \rangle.$
- K₀(S) is not free of finite rank, so neither is K₀(W), hence Rep_{cat}(W) > 0.
- Since J(W) = 0, there is no curve C with $\mathbf{D}^{b}(C)$ admissible in $\mathbf{D}^{b}(X)$.

We could also use a minimal resolution Z of X which is just a Moishezon manifold and use similar arguments.

Marcello Bernardara (IMT)

Categorical representability

Thank you!

Marcello Bernardara (IMT)

æ

イロン イロン イヨン イヨン