Isogenies and transcendental Hodge structures of K3 surfaces

Samuel Boissière

Université de Poitiers

Carry-Le-Rouet, May 2016

In collaboration with Alessandra Sarti and Davide Cesare Veniani

Isogenies

Definition

An isogeny $\gamma: X \dashrightarrow Y$ is a rational finite map of (prime) degree p between two complex projective K3 surfaces X and Y.

Example: 0

symplectic automorphism of order p

$$\frac{24}{p+1}$$
 A_{p-1} singularities

3

Transcendental Hodge structure

X : complex projective K3 surface, $H^2(X,\mathbb{Z})$: lattice for the intersection product. Néron–Severi lattice: $NS(X) := H^2(X,\mathbb{Z}) \cap H^{1,1}(X)$, Transcendental lattice: $T_X := NS(X)^{\perp}$.

Proposition

The Hodge structure on $\mathrm{H}^2(X,\mathbb{C})$ induces a Hodge decomposition

$$\mathbf{T}_{X,\mathbb{C}} = \mathbf{T}_X^{2,0} \oplus \mathbf{T}_X^{1,1} \oplus \mathbf{T}_X^{0,2}$$

which is an irreducible Hodge structure of weight two.

• Aim of the talk:

Relation between T_X and T_Y when X and Y are isogenous?

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why this is interesting: the Hodge conjecture

M: projective manifold, Group of Hodge classes : $\mathrm{Hdg}^k(M) := \mathrm{H}^{2k}(M, \mathbb{Q}) \cap \mathrm{H}^{k,k}(M).$

Hodge conjecture

Every Hodge class is algebraic, *i.e.* is a linear combination with rational coefficients of algebraic subvarieties.

In this talk:

- $M := Y \times X$ is 4-dimensional
- The Hodge conjecture is open for the group of Hodge classes

$$\mathrm{Hdg}^2(M)=\mathrm{H}^4(M,\mathbb{Q})\cap\mathrm{H}^{2,2}(M).$$

(B)

Interesting Hodge classes in $Hdg^2(Y \times X)$

$$\begin{split} \xi \in \mathrm{Hdg}^2(Y \times X) \cap (\mathrm{H}^2(Y, \mathbb{Q}) \otimes \mathrm{H}^2(X, \mathbb{Q})) \\ & \updownarrow \\ \xi \in \mathrm{Hom}_{\mathrm{Hdg}} \left(\mathrm{H}^2(Y, \mathbb{Q}), \mathrm{H}^2(X, \mathbb{Q}) \right) \\ & \parallel & \wr \parallel \\ \xi_{\mathrm{NS}} \in \mathrm{Hom}_{\mathrm{Hdg}} \left(\mathrm{NS}(Y)_{\mathbb{Q}}, \mathrm{NS}(X)_{\mathbb{Q}} \right) \\ & + & \oplus \\ \xi_{\mathrm{T}} \in \mathrm{Hom}_{\mathrm{Hdg}} \left(\mathrm{T}_{Y, \mathbb{Q}}, \mathrm{T}_{X, \mathbb{Q}} \right) \end{split}$$

• As a consequence:

ξ is algebraic $\Leftrightarrow \xi_{\mathrm{T}}$ is algebraic

K K E K E

The Hodge conjecture for products of K3 surfaces

Conjecture

Let X, Y be two complex projective K3 surfaces. Every morphism of rational Hodge structure $T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is algebraic.

Known results

- (Mukai 1987) True if $T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is an isometry and $\rho(Y) \ge 11$.
- (Nikulin 1987) True if $T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is an isometry and $\rho(Y) \geq 5$.
- (Buskin 2015) True if $T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is an isometry.

• Aim of the talk:

What if $T_{\mathbf{Y},\mathbb{Q}} \to T_{\mathbf{X},\mathbb{Q}}$ is not an isometry?

Isogenous K3 surfaces

• Resolution of the indeterminacies of the isogeny:

 β birational, $\tilde{\gamma}$ generically finite

rational map of degree p

• Example:

symplectic automorphism of order p = 2

 β blowup, $\tilde{\gamma}$ ramified double covering

Correspondence induced by an isogeny

The algebraic correspondence by Γ is a morphism

$$\gamma^* \colon \mathrm{H}^2(Y,\mathbb{Z}) \to \mathrm{H}^2(X,\mathbb{Z})$$

Proposition (Inose) $\gamma^*: T_Y \to T_X$ is a dilation with scale factor *p*.

Samuel Boissière (Université de Poitiers)

Isogenies of K3 surfaces

Carry-Le-Rouet, May 2016 8 / 24

Interpretation

- An isogeny γ: X --→ Y of primer order p induces a morphism of rational Hodge structures γ*: T_{Y,Q} → T_{X,Q} which is not an isometry, but *still* algebraic.
- More subtle question: even if γ^* is not an isometry, might the rational quadratic spaces $T_{Y,\mathbb{Q}}$ and $T_{X,\mathbb{Q}}$ still be isometric?
- Different formulation:

Can non-isometric rational transcendental Hodge structures of K3 surfaces be related by an algebraic correspondence?

- 3

< 同 > < 三 > < 三 > <

Main result

Theorem (-, Sarti, Veniani)

Let $\gamma: X \dashrightarrow Y$ be an isogeny of prime degree p between two complex projective K3 surfaces. Denote $r := \operatorname{rk} \operatorname{T}_Y = \operatorname{rk} \operatorname{T}_X$.

- **()** If *r* is odd, $T_{X,\mathbb{Q}}$ and $T_{Y,\mathbb{Q}}$ are never isometric.
- **2** If *r* is even, $T_{X,\mathbb{Q}}$ and $T_{Y,\mathbb{Q}}$ are isometric iff:
 - p = 2: for any prime number q ≡ 3 or 5 mod 8, the q-adic valuation ν_q(det T_X) is even.
 p > 2:

for any odd prime number $q \neq p$ such that p is not a square in \mathbb{F}_q , $\nu_q(\det T_X)$ is even;

$$\operatorname{\mathsf{res}}_{\rho}(\det \operatorname{T}_{X}) = (-1)^{\frac{r(r-1)}{2} + \nu_{\rho}(\det \operatorname{T}_{X})} \in \mathbb{F}_{\rho}^{*}/(\mathbb{F}_{\rho}^{*})^{2}.$$

- Recall: for any $p^{\alpha} \frac{s}{t} \in \mathbb{Q}$, $\operatorname{res}_{p} \left(p^{\alpha} \frac{s}{t} \right) = \frac{s}{t} \in \mathbb{F}_{p}$.
- This generalizes a previous result of van Geemen–Sarti (2007) for isogenies induced by symplectic involutions.

イロト 不得下 イヨト イヨト 二日

Examples: isogenies induced by symplectic automorphisms

• Generically rk NS(Y) =
$$\frac{24}{p+1}(p-1) + 1$$

$$r = \operatorname{rk} T_X = \operatorname{rk} T_Y = 21 - \frac{24}{p+1}(p-1) \ge 2$$

• $p \in \{2, 3, 5, 7\}$

• Generically r is odd, so $T_{X,\mathbb{Q}}$ and $T_{Y,\mathbb{Q}}$ are not isometric.

Example: Shioda–Inose structure

symplectic involution such that

- Y is a Kummer surface
- $\gamma^* \colon \mathrm{T}_Y(2) \to \mathrm{T}_X$ isometry over \mathbb{Z}

Theorem (Morrison)

If $\rho(X) \in \{19, 20\}$ then X admits a Shioda–Inose structure.

• If
$$\rho(X) = 19$$
, $T_{X,\mathbb{Q}}$ and $T_{Y,\mathbb{Q}}$ are never isometric.

• If
$$\rho(X) = 20$$
, both cases can occur.

Example: the Fermat quartic

$$X: x^{4} + y^{4} + z^{4} + t^{4} = 0$$

$$(8 \quad 0) \quad (2 \quad 0)$$

$$\mathbf{T}_{X} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} \sim_{\mathbb{Q}} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

p = 2: symplectic involution σ(x, y, z, t) = (-x, -y, z, t). One has det T_X = 2², ν_q(det T_X) = 0 ∀q ≡ 3,5 mod 8 so: T_{Y,Q} is isometric to T_{X,Q}.
p = 3: automorphism σ(x, y, z, t) = (y, z, x, t). One has ν_q(det T_X) = 0 if q ≠ 3 and 2² ≠ (-1) ∈ F₃^{*}/(F₃)² so: T_{Y,Q} is not isometric to T_{X,Q}.

Example: the Schur quartic

$$X: x^4 - xy^3 = z^4 - zt^3$$

$$\mathbf{T}_X = \begin{pmatrix} 8 & 4 \\ 4 & 8 \end{pmatrix} \sim_{\mathbb{Q}} \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$$

p = 2: symplectic involution σ(x, y, z, t) = (-x, y, -z, t). One has det T_X = 3 · 2², ν₃(det T_X) = 1 so: T_{Y,Q} is not isometric to T_{X,Q}.
p = 3: automorphism σ(x, y, z, t) = (x, ζ₃y, z, ζ₃t). One has T_{X,Q}(3) ~_Q ⟨2, 6⟩ ~_Q T_{X,Q} so: T_{Y,Q} is isometric to T_{X,Q}.

Elements of proof

 $\gamma^* \colon \mathrm{T}_{\mathbf{Y}} \to \mathrm{T}_{\mathbf{X}}$

1 $T_Y(p) \hookrightarrow T_X$ is a sublattice of the same rank

$$(\mathbf{T}_X, \mathbf{T}_Y(\boldsymbol{p}))^2 = \boldsymbol{p}^r \left| \frac{\det \mathbf{T}_Y}{\det \mathbf{T}_X} \right|$$

I odd: If $T_{X,\mathbb{Q}} \cong T_{Y,\mathbb{Q}}$ then $\left|\frac{\det T_Y}{\det T_X}\right| \in (\mathbb{Q}^*)^2$, impossible since r is odd.

• r even: one has $T_{Y,\mathbb{O}}(p) \cong T_{X,\mathbb{O}}$ so

$$\mathrm{T}_{X,\mathbb{Q}}\cong\mathrm{T}_{Y,\mathbb{Q}}\Longleftrightarrow\mathrm{T}_{X,\mathbb{Q}}(p)\cong\mathrm{T}_{X,\mathbb{Q}}$$

A complete answer is provided by Witt theory.

Witt theory

Witt group $W(\mathbb{K})$: Witt-equivalence classes of regular quadratic \mathbb{K} -forms.

$$\partial_q(r) := egin{cases} 0 & ext{if }
u_q(r) ext{ is even} \ \operatorname{res}_q(r) & ext{if }
u_q(r) ext{ is odd} \end{cases}$$

$$ar{\partial}_q \colon W(\mathbb{Q}) o W(\mathbb{F}_q), \langle a_1, \dots, a_n
angle_W \mapsto \langle \partial_q(a_1), \dots, \partial_q(a_n)
angle_W$$

Theorem

The morphisms $\bar{\partial}_q$ induce a group isomorphism

$$W(\mathbb{Q}) \cong \bigoplus_{q \text{ prime}, q = \infty} W(\mathbb{F}_q)$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Two numerical consequences:

Proposition

Two regular quadratic \mathbb{Q} -forms φ and ψ are Witt-equivalent iff they have the same signature over \mathbb{R} and for any prime number q one has

$$\bar{\partial}_q([\varphi]_W) = \bar{\partial}_q([\psi]_W) \in W(\mathbb{F}_q).$$

Discriminant
$$\Delta(\varphi) := (-1)^{\frac{n(n-1)}{2}} \det(\varphi) \in \mathbb{K}/(\mathbb{K}^*)^2$$
, $n = \dim \varphi$.

Proposition

Two regular quadratic \mathbb{F}_q -forms are Witt-equivalent iff their dimensions have the same parity and their discriminants are equal.

• These propositions provide a numerical criterium to decide whether $T_{X,\mathbb{Q}}(p) \cong T_{X,\mathbb{Q}}$ or not.

Example: isogeny not induced by an automorphism

- A : abelian surface
- Km(A): Kummer surface of A
- $G \subset A[p]$: subgroup of order p

of the group of *p*-torsion points of *A*.

For p > 7, the map γ is an isogeny between two K3 surfaces, which cannot be induced by a symplectic automorphism.

Example: isometry not coming from an isogeny

- X: projective K3 surface
- Mukai vector $v = (r, \ell, s) \in \widetilde{\mathrm{H}}^*(X, \mathbb{Z})$ (Mukai lattice), ℓ ample
- $M_{\nu}(X)$: moduli space of ℓ -stable vector bundles E on X with Mukai vector $\nu(E) = ch(E)\sqrt{td(X)} = \nu$.

Theorem (Mukai)

If $v^2 = 0$, r, s > 0, gcd(r, s) = 1, then $M_v(X)$ is a projective K3 surface.

• Universal family

 $M := M_{\nu}(X)$

integral algebraic class:
$$Z := \pi_X^* \sqrt{\operatorname{td}(X)} \operatorname{ch}(\mathcal{E}) \pi_M^* \sqrt{\operatorname{td}(M)}$$

isometry: $[Z]_*: v^{\perp}/\mathbb{Z}v \to \mathrm{H}^2(M,\mathbb{Z})$

restricts to an exact sequence

$$0 \to \mathrm{T}_X \xrightarrow{\varphi} \mathrm{T}_M \to \mathsf{Coker}(\varphi) \to 0$$

inducing a rational isometry $T_{X,\mathbb{Q}} \cong T_{M,\mathbb{Q}}$.

Proof of Mukai-Nikulin theorem

Mukai-Nikulin-Buskin theorem

Let X, Y be two complex projective K3 surfaces. If $\rho(Y) \ge 5$ then every isometry of rational Hodge structure $\varphi \colon T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is algebraic.

Why is it important to assume that φ is an isometry?

- The easy case: true if $\varphi \colon T_Y \to T_X$ is an isometry over \mathbb{Z} and $\rho(Y) > 11$.
- New geometric idea (moduli spaces of sheaves on K3): true if $\varphi \colon T_Y \to T_X$ is an isometry over \mathbb{Z} , no restriction on $\rho(Y)$.
- Induction argument: true if φ: T_Y → T_X is defined over Z and has a finite cokernel. Induction on the number of generators of Coker φ, no restriction on ρ(Y).
- General case: the isometry φ: T_{Y,Q} → T_{X,Q} is not defined over Z and ρ(Y) ≥ 11 (Mukai), or ρ(Y) ≥ 5 (Nikulin).

The easy case

- $\tau_d \colon \mathrm{H}^2(Y,\mathbb{Z}) \to \mathrm{H}^2(Y,\mathbb{Z}) \colon$ reflection by a (-2)-class d.
- Torelli theorem: $\Phi \circ \tau_{d_1} \circ \cdots \circ \tau_{d_k} = f^*$, where $f: X \to Y$ is an isomorphism.

•
$$\varphi = \Phi_{|T_Y} = f^*_{|T_Y}$$
 since $T_Y \perp d_i$.

• so φ is the correspondence by the graph of f, hence is algebraic.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● � � �

General case

 $\varphi \colon T_{\mathbf{Y},\mathbb{Q}} \to T_{\mathbf{X},\mathbb{Q}}$ is an isometry, not defined over \mathbb{Z} .

- Consider the sublattice $T := T_Y \cap \varphi^{-1}(T_X)$.
- $\varphi_T \colon T \hookrightarrow T_X$ is an isometry over \mathbb{Q} , already defined over \mathbb{Z} .
- If there exists an embedding of T in the K3-lattice, whose orthogonal complement is hyperbolic, then by the *Surjectivity of the Period Map* there exists a K3 surface S such that $T_S \cong T$.
- $\varphi_1 \colon T_S \to T_X$ is algebraic (induction step)
- $\varphi_2 \colon T_S \to T_Y$ is algebraic (induction step)
- so $\varphi = \varphi_2 \circ \varphi_1^{-1}$ is algebraic
- the condition is fulfilled if $\rho(T) < 11$, or better if $\rho(Y) \ge 5$ (Nikulin).

Speculation

Hodge conjecture

Let X, Y be two complex projective K3 surfaces. Every morphism of rational Hodge structures $T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is algebraic.

Mukai-Nikulin-Buskin theorem

Let X, Y be two complex projective K3 surfaces. Every isometry of rational Hodge structures $T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is algebraic.

Speculation

Let X, Y be two complex projective K3 surfaces. Every dilation of rational Hodge structures $T_{Y,\mathbb{Q}} \to T_{X,\mathbb{Q}}$ is algebraic.