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Isogenies

Isogenies

Definition

An isogeny γ : X 99K Y is a rational finite map of (prime) degree p

between two complex projective K3 surfaces X and Y .

Example:

Xσ
88

��

γ

&&▼
▼

▼
▼

▼
▼

▼ symplectic automorphism of order p

X/σ Y
resolutionoo 24

p+1 Ap−1 singularities

Samuel Boissière (Université de Poitiers) Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 2 / 24



Transcendental Hodge structure

Transcendental Hodge structure

X : complex projective K3 surface,
H2(X ,Z) : lattice for the intersection product.
Néron–Severi lattice: NS(X ) := H2(X ,Z) ∩H1,1(X ),
Transcendental lattice:TX := NS(X )⊥.

Proposition

The Hodge structure on H2(X ,C) induces a Hodge decomposition

TX ,C = T
2,0
X ⊕ T

1,1
X ⊕ T

0,2
X

which is an irreducible Hodge structure of weight two.

Aim of the talk:

Relation between TX and TY when X and Y are isogenous?
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Transcendental Hodge structure

Why this is interesting: the Hodge conjecture

M : projective manifold,
Group of Hodge classes : Hdgk(M) := H2k(M,Q) ∩Hk,k(M).

Hodge conjecture

Every Hodge class is algebraic, i.e. is a linear combination with rational
coefficients of algebraic subvarieties.

In this talk:
◮ M := Y × X is 4-dimensional
◮ The Hodge conjecture is open for the group of Hodge classes

Hdg
2(M) = H4(M ,Q) ∩ H2,2(M).
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Transcendental Hodge structure

Interesting Hodge classes in Hdg2(Y × X )

ξ ∈ Hdg2(Y × X ) ∩ (H2(Y ,Q)⊗H2(X ,Q))

m

ξ ∈ HomHdg

(
H2(Y ,Q),H2(X ,Q)

)
= ∼ =

ξNS ∈ HomHdg (NS(Y )Q,NS(X )Q)

+ ⊕

ξT ∈ HomHdg (TY ,Q,TX ,Q)

As a consequence:

ξ is algebraic ⇔ ξT is algebraic
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Transcendental Hodge structure

The Hodge conjecture for products of K3 surfaces

Conjecture

Let X ,Y be two complex projective K3 surfaces. Every morphism of
rational Hodge structure TY ,Q → TX ,Q is algebraic.

Known results
1 (Mukai 1987) True if TY ,Q → TX ,Q is an isometry and ρ(Y ) ≥ 11.

2 (Nikulin 1987) True if TY ,Q → TX ,Q is an isometry and ρ(Y ) ≥ 5.

3 (Buskin 2015) True if TY ,Q → TX ,Q is an isometry.

Aim of the talk:

What if TY ,Q → TX ,Q is not an isometry?
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Isogenous K3 surfaces

Isogenous K3 surfaces

Resolution of the indeterminacies of the isogeny:

X̃

β

��✁✁
✁✁
✁✁
✁✁

γ̃

��❂
❂❂

❂❂
❂❂

❂ β birational, γ̃ generically finite

X
γ

//❴❴❴❴❴❴❴ Y rational map of degree p

Example:

Xσ
88

��

γ

&&▼
▼

▼
▼

▼
▼

▼ X̃
β

oo

γ̃

��

symplectic automorphism of order p = 2

X/σ Y
resolutionoo β blowup, γ̃ ramified double covering
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Isogenous K3 surfaces

Correspondence induced by an isogeny

X̃

β

��✄✄
✄✄
✄✄
✄✄

γ̃

��❁
❁❁

❁❁
❁❁

❁❁
Γ := Im

(
(β, γ̃) : X̃ → X × Y

)
⊂ X × Y

X
γ

//❴❴❴❴❴❴❴ Y

The algebraic correspondence by Γ is a morphism

γ∗ : H2(Y ,Z) → H2(X ,Z)

Proposition (Inose)

γ∗ : TY → TX is a dilation with scale factor p.
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Isogenous K3 surfaces

Interpretation

An isogeny γ : X 99K Y of primer order p induces a morphism of
rational Hodge structures γ∗ : TY ,Q → TX ,Q which is not an isometry,
but still algebraic.

More subtle question: even if γ∗ is not an isometry, might the
rational quadratic spaces TY ,Q and TX ,Q still be isometric?

Different formulation:

Can non-isometric rational transcendental Hodge structures
of K3 surfaces be related by an algebraic correspondence?

Samuel Boissière (Université de Poitiers) Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 9 / 24



Isogenous K3 surfaces

Main result

Theorem (-, Sarti, Veniani)

Let γ : X 99K Y be an isogeny of prime degree p between two complex
projective K3 surfaces. Denote r := rkTY = rkTX .

1 If r is odd, TX ,Q and TY ,Q are never isometric.
2 If r is even, TX ,Q and TY ,Q are isometric iff:

◮ p = 2: for any prime number q ≡ 3 or 5 mod 8,
the q-adic valuation νq(detTX ) is even.

◮ p > 2:
⋆ for any odd prime number q 6= p such that p is not a square in Fq,

νq(detTX ) is even;

⋆ resp(detTX ) = (−1)
r(r−1)

2
+νp (detTX ) ∈ F∗

p/(F
∗

p)
2.

Recall: for any pα s
t
∈ Q, resp

(
pα s

t

)
= s

t
∈ Fp.

This generalizes a previous result of van Geemen–Sarti (2007) for
isogenies induced by symplectic involutions.
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Examples

Examples: isogenies induced by symplectic automorphisms

Xσ
88

��

γ

&&▼
▼

▼
▼

▼
▼

▼ symplectic automorphism of order p

X/σ Y
resolutionoo 24

p+1 Ap−1 singularities

Generically rkNS(Y ) = 24
p+1(p − 1) + 1

r = rkTX = rkTY = 21−
24

p + 1
(p − 1) ≥ 2

p ∈ {2, 3, 5, 7}

Generically r is odd, so TX ,Q and TY ,Q are not isometric.
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Examples

Example: Shioda–Inose structure

Xσ
88

��

γ

''◆
◆

◆
◆

◆
◆

◆

X/σ Y
resolutionoo

symplectic involution such that
• Y is a Kummer surface
• γ∗ : TY (2) → TX isometry over Z

Theorem (Morrison)

If ρ(X ) ∈ {19, 20} then X admits a Shioda–Inose structure.

If ρ(X ) = 19, TX ,Q and TY ,Q are never isometric.

If ρ(X ) = 20, both cases can occur.
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Examples

Example: the Fermat quartic

X : x4 + y4 + z4 + t4 = 0

TX =

(
8 0
0 8

)
∼Q

(
2 0
0 2

)

p = 2: symplectic involution σ(x , y , z , t) = (−x ,−y , z , t). One has
detTX = 22, νq(detTX ) = 0 ∀q ≡ 3, 5 mod 8 so:

TY ,Q is isometric to TX ,Q.

p = 3: automorphism σ(x , y , z , t) = (y , z , x , t). One has
νq(detTX ) = 0 if q 6= 3 and 22 6= (−1) ∈ F∗

3/(F
∗
3)

2 so:

TY ,Q is not isometric to TX ,Q.
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Examples

Example: the Schur quartic

X : x4 − xy3 = z4 − zt3

TX =

(
8 4
4 8

)
∼Q

(
2 0
0 6

)

p = 2: symplectic involution σ(x , y , z , t) = (−x , y ,−z , t). One has
detTX = 3 · 22, ν3(detTX ) = 1 so:

TY ,Q is not isometric to TX ,Q.

p = 3: automorphism σ(x , y , z , t) = (x , ζ3y , z , ζ̄3t). One has
TX ,Q(3) ∼Q 〈2, 6〉 ∼Q TX ,Q so:

TY ,Q is isometric to TX ,Q.
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Elements of proof

Elements of proof

X̃
β

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ γ̃

��❄
❄❄

❄❄
❄❄

❄

X
γ

//❴❴❴❴❴❴❴ Y

γ∗ : TY → TX

dilation with scale factor p

1 TY (p) →֒ TX is a sublattice of the same rank

2 [TX ,TY (p)]
2 = pr

∣∣∣detTY

detTX

∣∣∣
3 r odd:

If TX ,Q
∼= TY ,Q then

∣∣∣detTY

detTX

∣∣∣ ∈ (Q∗)2, impossible since r is odd.

4 r even: one has TY ,Q(p) ∼= TX ,Q so

TX ,Q
∼= TY ,Q ⇐⇒ TX ,Q(p) ∼= TX ,Q

◮ A complete answer is provided by Witt theory.
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Elements of proof Witt theory

Witt theory

Witt group W (K): Witt-equivalence classes of regular quadratic K-forms.

∂q(r) :=

{
0 if νq(r) is even

resq(r) if νq(r) is odd

∂̄q : W (Q) → W (Fq), 〈a1, . . . , an〉W 7→ 〈∂q(a1), . . . , ∂q(an)〉W

Theorem

The morphisms ∂̄q induce a group isomorphism

W (Q) ∼=
⊕

q prime,q=∞

W (Fq)

Samuel Boissière (Université de Poitiers) Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 16 / 24



Elements of proof Witt theory

Two numerical consequences:

Proposition

Two regular quadratic Q-forms ϕ and ψ are Witt-equivalent iff they have
the same signature over R and for any prime number q one has

∂̄q([ϕ]W ) = ∂̄q([ψ]W ) ∈ W (Fq).

Discriminant ∆(ϕ) := (−1)
n(n−1)

2 det(ϕ) ∈ K/(K∗)2, n = dimϕ.

Proposition

Two regular quadratic Fq-forms are Witt-equivalent iff their dimensions
have the same parity and their discriminants are equal.

These propositions provide a numerical criterium to decide whether
TX ,Q(p) ∼= TX ,Q or not.
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Further examples

Example: isogeny not induced by an automorphism

• A : abelian surface
• Km(A): Kummer surface of A
• G ⊂ A[p] : subgroup of order p
of the group of p-torsion points of A.

A
p:1

//

��
✤

✤

✤ B = A/G

��
✤
✤
✤

Km(A)
γ

//❴❴❴ Km(B)

For p > 7, the map γ is an isogeny between two K3 surfaces,
which cannot be induced by a symplectic automorphism.
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Further examples Example: isometry not coming from an isogeny

Example: isometry not coming from an isogeny
• X : projective K3 surface
• Mukai vector v = (r , ℓ, s) ∈ H̃∗(X ,Z) (Mukai lattice), ℓ ample
• Mv(X ): moduli space of ℓ-stable vector bundles E on X with Mukai
vector v(E ) = ch(E )

√
td(X ) = v .

Theorem (Mukai)

If v2 = 0, r , s > 0, gcd(r , s) = 1, then Mv(X ) is a projective K3 surface.

Universal family

E

��
X ×Mv (X )

πX

zztt
tt
tt
tt
tt

πM
&&▼

▼▼
▼▼

▼▼
▼▼

▼

X Mv (X )
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Further examples Example: isometry not coming from an isogeny

M := Mv (X )

E

��
X ×M

πX

{{✇✇
✇✇
✇✇
✇✇
✇

πM
##●

●●
●●

●●
●●

X M

integral algebraic class:

Z := π∗X
√

td(X ) ch(E)π∗M
√

td(M)

isometry:
[Z ]∗ : v

⊥/Zv → H2(M,Z)

restricts to an exact sequence

0 → TX
ϕ
−→ TM → Coker(ϕ) → 0

inducing a rational isometry TX ,Q
∼= TM,Q.
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Proof of Mukai–Nikulin theorem

Proof of Mukai–Nikulin theorem

Mukai–Nikulin–Buskin theorem

Let X ,Y be two complex projective K3 surfaces. If ρ(Y ) ≥ 5 then every
isometry of rational Hodge structure ϕ : TY ,Q → TX ,Q is algebraic.

Why is it important to assume that ϕ is an isometry?

The easy case: true if ϕ : TY → TX is an isometry over Z and
ρ(Y ) > 11.

New geometric idea (moduli spaces of sheaves on K3): true if
ϕ : TY → TX is an isometry over Z, no restriction on ρ(Y ).

Induction argument: true if ϕ : TY → TX is defined over Z and has a
finite cokernel. Induction on the number of generators of Coker ϕ, no
restriction on ρ(Y ).

General case: the isometry ϕ : TY ,Q → TX ,Q is not defined over Z
and ρ(Y ) ≥ 11 (Mukai), or ρ(Y ) ≥ 5 (Nikulin).

Samuel Boissière (Université de Poitiers) Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 21 / 24



Proof of Mukai–Nikulin theorem

The easy case

TY
�

�

//

ϕ

��

H2(Y ,Z)

Φ
��
✤
✤
✤

TX
�

�

// H2(X ,Z)

∃Φ extending ϕ
if ρ(Y ) > 11 (Nikulin)

τd : H
2(Y ,Z) → H2(Y ,Z) : reflection by a (−2)-class d .

Torelli theorem: Φ ◦ τd1 ◦ · · · ◦ τdk = f ∗, where f : X → Y is an
isomorphism.

ϕ = Φ|TY
= f ∗|TY

since TY ⊥ di .

so ϕ is the correspondence by the graph of f , hence is algebraic.
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Proof of Mukai–Nikulin theorem

General case

ϕ : TY ,Q → TX ,Q is an isometry, not defined over Z.

Consider the sublattice T := TY ∩ ϕ−1(TX ).

ϕT : T →֒ TX is an isometry over Q, already defined over Z.

If there exists an embedding of T in the K3-lattice, whose orthogonal
complement is hyperbolic, then by the Surjectivity of the Period Map

there exists a K3 surface S such that TS
∼= T .

ϕ1 : TS → TX is algebraic (induction step)

ϕ2 : TS → TY is algebraic (induction step)

so ϕ = ϕ2 ◦ ϕ
−1
1 is algebraic

the condition is fulfilled if ρ(T ) < 11, or better if ρ(Y ) ≥ 5 (Nikulin).
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Speculation

Speculation

Hodge conjecture

Let X ,Y be two complex projective K3 surfaces. Every morphism of
rational Hodge structures TY ,Q → TX ,Q is algebraic.

Mukai–Nikulin–Buskin theorem

Let X ,Y be two complex projective K3 surfaces. Every isometry of
rational Hodge structures TY ,Q → TX ,Q is algebraic.

Speculation

Let X ,Y be two complex projective K3 surfaces. Every dilation of rational
Hodge structures TY ,Q → TX ,Q is algebraic.
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