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Isogenies

Isogenies

Definition

An isogeny v: X --» Y is a rational finite map of (prime) degree p
between two complex projective K3 surfaces X and Y.

@ Example:
@X - symplectic automorphism of order p
~ - \’Y
X o <fesclition 2y 24 A,y singularities
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Transcendental Hodge structure

X : complex projective K3 surface,

H?(X,Z) : lattice for the intersection product.
Néron—Severi lattice: NS(X) := H2(X,Z) N HM(X),
Transcendental lattice:Tx := NS(X)*.

Proposition

The Hodge structure on H2(X, C) induces a Hodge decomposition

Txc=Ty & T & Ty’

which is an irreducible Hodge structure of weight two.

@ Aim of the talk:

Relation between Tx and Ty when X and Y are isogenous?
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Why this is interesting: the Hodge conjecture

M : projective manifold,
Group of Hodge classes : Hdg(M) := H2X(M, Q) N HXK(M).

Hodge conjecture
Every Hodge class is algebraic, i.e. is a linear combination with rational
coefficients of algebraic subvarieties.

@ In this talk:
» M:=Y x X is 4-dimensional
» The Hodge conjecture is open for the group of Hodge classes

Hdg?(M) = HY(M, Q) N H>?*(M).
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Interesting Hodge classes in Hdg?(Y x X)

€ € Hdg?(Y x X)n (H3(Y,Q) ® H3(X,Q))
i}
¢ € Hompqg (H*(Y,Q), H3(X,Q))

! 2
éxs € Hompgg (NS(Y)q, NS(X)q)
+ D

&1 € Hompugg (Ty 0, Tx Q)

o Asa consequence:

¢ is algebraic < &7 is algebraic
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Transcendental Hodge structure

The Hodge conjecture for products of K3 surfaces

Conjecture

Let X, Y be two complex projective K3 surfaces. Every morphism of
rational Hodge structure Ty g — Tx g is algebraic.

Known results
© (Mukai 1987) True if Ty g — Tx g is an isometry and p(Y) > 11.
@ (Nikulin 1987) True if Ty g — Tx g is an isometry and p(Y) > 5.
@ (Buskin 2015) True if Ty g — Tx g is an isometry.

@ Aim of the talk:

What if Ty g — Tx g is not an isometry?

Samuel Boissiere (Université de Poitiers) Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 6 /24



Isogenous K3 surfaces

Isogenous K3 surfaces

@ Resolution of the indeterminacies of the isogeny:

X [ birational, 5 generically finite
N
X—--- 5T Y rational map of degree p
o Example:
C X X symplectic automorphism of order p = 2
X/O‘M Y B blowup, % ramified double covering

Samuel Boissiere (Université de Poitiers) Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 7 /24



Isogenous K3 surfaces

Correspondence induced by an isogeny

X F::Im((ﬂ,’"y):)?%XxY)CXXY

The algebraic correspondence by I is a morphism

v H2(Y,Z) — H3(X, Z)

Proposition (Inose) J

v*: Ty — Tx is a dilation with scale factor p.
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Isogenous K3 surfaces

Interpretation

@ An isogeny v: X --» Y of primer order p induces a morphism of
rational Hodge structures v*: Ty g — Tx g which is not an isometry,
but still algebraic.

@ More subtle question: even if v* is not an isometry, might the
rational quadratic spaces Ty g and Tx g still be isometric?

o Different formulation:

Can non-isometric rational transcendental Hodge structures
of K3 surfaces be related by an algebraic correspondence?
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Isogenous K3 surfaces

Main result

Theorem (-, Sarti, Veniani)

Let v: X --» Y be an isogeny of prime degree p between two complex
projective K3 surfaces. Denote r :=rk Ty = rk Tx.

Q If risodd, Tx g and Ty g are never isometric.

Q If riseven, Tx g and Ty g are isometric iff:

p = 2: for any prime number g =3 or 5 mod 8,

the g-adic valuation vg(det Tx) is even.
p>2:

for any odd prime number g # p such that p is not a square in Fg,
vg(det Tx) is even;

res,(det Tx) = (=1)" 7"

+vp(det Tx) c F;/(F;)Z

t
@ This generalizes a previous result of van Geemen-Sarti (2007) for
isogenies induced by symplectic involutions.

@ Recall: for any p®3 € Q, res, (po‘§) =3 €F,.
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Examples: isogenies induced by symplectic automorphisms

€X - symplectic automorphism of order p

~
~

~
lution . -
Xjo <220~y Ap—1 singularities

24
p+I
e Generically rk NS(Y) = p+1 t(p—1)+1

24
r=rkTx=rkTy=21——(p—-1)>2
X Y p+1(P ) >

e pe{2,3,57}
@ Generically r is odd, so Tx g and Ty g are not isometric.
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Example: Shioda—Inose structure

symplectic involution such that
C’:X ~ e Y is a Kummer surface
~J e v*: Ty(2) — Tx isometry over Z

~

~
resolution
X [ <eolution %y

Theorem (Morrison)
If p(X) € {19,20} then X admits a Shioda—Inose structure. J

o If p(X) =19, Tx g and Ty g are never isometric.

o If p(X) = 20, both cases can occur.
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Example: the Fermat quartic

X:x*+yt 424+t =0

8 0 20
(68~ (6 2)
@ p = 2: symplectic involution o(x,y, z,t) = (—x,—y, z,t). One has

det Tx = 22, v4(detTx) =0 Vg =3,5 mod 8 so:
Ty g is isometric to Tx q.

@ p = 3: automorphism o(x,y,z,t) = (y,z, x, t). One has
vg(det Tx) = 0 if g # 3 and 22 # (—1) € F3/(F%)? so:
Ty g Is not isometric to Tx @.
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Example: the Schur quartic

X:x*—xy3=z* — zt3 .
(8 4 2 0 /
v (e 3)elo o ¢«

@ p = 2: symplectic involution o(x,y, z,t) = (—x,y,—2z,t). One has
det Tx =322, v3(det Tx) =1 so:
Ty @ is not isometric to Tx q.
@ p = 3: automorphism o(x,y,z,t) = (x,(3y, z,(3t). One has
TX7Q(3) ~Q (2,6) ~Q TX’@ SO:
Ty g Is isometric to Tx .

Samuel Boissiere (Université de Poitiers) Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 14 / 24



Elements of proof

Elements of proof

X v: Ty — Tx

7 \:7\ dilation with scale factor p

@ Ty(p) — Tx is a sublattice of the same rank

@ [Tx, Ty(p)? = p" | G5t
Q r odd:
det Ty

If Tx o= Ty o then € (Q*)?, impossible since r is odd.
7@ a@ detTX

@ r even: one has Ty g(p) = Tx g so

Txo =Ty Txaolp) = Txo

» A complete answer is provided by Witt theory.
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SENENTERG I  Witt theory

Witt theory

Witt group W(K): Witt-equivalence classes of regular quadratic K-forms.
D(r) = 0 ?f vg(r) ?s even
resq(r) if vg(r) is odd

dq: W(Q) = W(Fy), (a1, .., an)w — (9q(a1),-- -, q(an))w
Theorem

The morphisms 5q induce a group isomorphism

wQ= @ WwE)

g prime,g=00
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Elements of proof BRUUIEE (X157

Two numerical consequences:

Proposition

Two regular quadratic Q-forms ¢ and v are Witt-equivalent iff they have
the same signature over R and for any prime number g one has

dq([elw) = dg([¥lw) € W(Fy).

Discriminant A(yp) = (—1)@ det(p) € K/(K*)2, n=dime.

Proposition

Two regular quadratic Fq-forms are Witt-equivalent iff their dimensions
have the same parity and their discriminants are equal.

@ These propositions provide a numerical criterium to decide whether
Tx o(p) = Tx g or not.
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Further examples

Example: isogeny not induced by an automorphism

e A : abelian surface

e Km(A): Kummer surface of A

e G C A[p] : subgroup of order p

of the group of p-torsion points of A.

APl B—aA/G
' \

I \
Kmv(A)_ 2 >KmY(B)

For p > 7, the map ~y is an isogeny between two K3 surfaces,
which cannot be induced by a symplectic automorphism.
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EIGHETRSENLIEE  Example: isometry not coming from an isogeny

Example: isometry not coming from an isogeny

e X: projective K3 surface

e Mukai vector v = (r,(,s) € H*(X,Z) (Mukai lattice), £ ample

e M, (X): moduli space of ¢-stable vector bundles E on X with Mukai

vector v(E) = ch(E)\/td(X) = v.
Theorem (Mukai)

If v2=0, r,s >0, gcd(r,s) = 1, then M,(X) is a projective K3 surface. J

@ Universal family

&
|
X x My(X)
X M.(X)

Samuel Boissiere (Université de Poitiers)

Isogenies of K3 surfaces Carry-Le-Rouet, May 2016 19 / 24



G EESGELIEEN  Example: isometry not coming from an isogeny

M = M, (X)
& integral algebraic class:
l Z := my+/td(X) ch(&)mhyy/td(M)
X x M isometry:
y \ [Z].: vi/Zv — H2(M, Z)
™™
X M

restricts to an exact sequence

0— Tx 5 Ty — Coker(p) — 0

inducing a rational isometry Tx g = Ty q-
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Proof of Mukai—Nikulin theorem

Mukai—Nikulin—Buskin theorem

Let X, Y be two complex projective K3 surfaces. If p(Y) > 5 then every
isometry of rational Hodge structure ¢: Ty g — Tx g is algebraic.

Why is it important to assume that ¢ is an isometry?

@ The easy case: true if p: Ty — Tx is an isometry over Z and
p(Y) > 11.
@ New geometric idea (moduli spaces of sheaves on K3): true if
¢: Ty — Tx is an isometry over Z, no restriction on p(Y).
@ Induction argument: true if ¢: Ty — Tx is defined over Z and has a

finite cokernel. Induction on the number of generators of Coker ¢, no
restriction on p(Y).

@ General case: the isometry ¢: Ty g — Tx g is not defined over Z
and p(Y) > 11 (Mukai), or p(Y) > 5 (Nikulin).
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Proof of Mukai—Nikulin theorem

The easy case

Ty H2(Y,Z)
!
® | 3¢ extending ¢

A . > )
Ty m2(x,z) T AY)> 1 (Nikulin)

o 74: H3(Y,Z) — H2(Y,Z) : reflection by a (—2)-class d.
@ Torelli theorem: ® o7y o--- 071y = f*, where f: X = Y is an
isomorphism.

o p=p, = fﬁ“y since Ty L d;.

@ so  is the correspondence by the graph of f, hence is algebraic.
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Proof of Mukai—Nikulin theorem

General case

¢: Ty g — Tx g is an isometry, not defined over Z.
o Consider the sublattice T := Ty N~} (Tx).
@ p1: T < Tx is an isometry over Q, already defined over Z.

@ If there exists an embedding of T in the K3-lattice, whose orthogonal
complement is hyperbolic, then by the Surjectivity of the Period Map
there exists a K3 surface S such that Tg¢ = T.

¢1: Ts — Tx is algebraic (induction step)

w2: Ts — Ty is algebraic (induction step)

SO = (p 0 gol_l is algebraic

the condition is fulfilled if p(T) < 11, or better if p(Y) > 5 (Nikulin).

)
)
)
)
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Speculation

Speculation

Hodge conjecture

Let X, Y be two complex projective K3 surfaces. Every morphism of
rational Hodge structures Ty g — Tx @ is algebraic.

Mukai—Nikulin—Buskin theorem

Let X, Y be two complex projective K3 surfaces. Every isometry of
rational Hodge structures Ty g — Tx g is algebraic.

Speculation

Let X, Y be two complex projective K3 surfaces. Every dilation of rational
Hodge structures Ty g — Tx g is algebraic.
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