Michele Bolognesi HOMOLOGICAL PROJECTIVE DUALITY FOR DETERMINANTAL VARIETIES (with M.Bernardara and D.Faenzi) MCPG - Carry-Le-Rouet 25 May 2016 Let X be a smooth projective algebraic variety.

Definition

A semiorthogonal decomposition of $D^b(X)$ is an ordered sequence of full admissible triangulated subcategories A_1,\ldots,A_n of $D^b(X)$ such that :

•
$$\operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathsf{X})}(\mathsf{A}_{\mathsf{i}},\mathsf{A}_{\mathsf{j}}) = \mathbf{0}$$
 for all $i > j$ and

▶ for all objects A_i of $\mathbf{A_i}$ and A_j of $\mathbf{A_j}$ and for every object T of $\mathbf{D^b}(\mathbf{X})$, there is a chain of morphisms $0 = T_n \rightarrow T_{n-1} \rightarrow \cdots \rightarrow T_1 \rightarrow T_0 = T$ such that the cone of $T_k \rightarrow T_{k-1}$ is an object of $\mathbf{A_k}$ for all $1 \le k \le n$.

Such a decomposition will be written

$$\mathsf{D}^{\mathsf{b}}(\mathsf{X}) = \langle \mathsf{A}_1, \dots, \mathsf{A}_n \rangle.$$

Definition

An object E of $\mathbf{D}^{\mathbf{b}}(\mathbf{X})$ is exceptional if $\operatorname{Hom}_{\mathbf{D}^{\mathbf{b}}(\mathbf{X})}(E, E) = \mathbb{C}$ and $\operatorname{Hom}_{\mathbf{D}^{\mathbf{b}}(\mathbf{X})}(E, E[i]) = 0$ for all $i \neq 0$. An ordered sequence (E_1, \ldots, E_l) of exceptional objects is an exceptional collection if $\operatorname{Hom}_{\mathbf{D}^{\mathbf{b}}(\mathbf{X})}(E_j, E_k[i]) = 0$ for all j > k and for all $i \in \mathbb{Z}$.

SOD is a strong property, there exists varieties that have no SOD at all.

- Calabi-Yau varieties
- postive genus curves

- SODs seem to encode the birational geometry of algebraic varieties (Ex : cubic 3fold and Fano X₁₄)
- rationality questions (Ex : conic bundles, cubic 4folds)
- Fano visitor problem

 $X_3 \subset \mathbb{P}^4$ the smooth cubic threefold. $X_{14} = Gr(2,6) \cap \mathbb{P}^9 \subset \mathbb{P}^{14}$ the smooth Fano 3fold of degree 14. Any $\widetilde{X_{14}}$ is birational to a given $\widetilde{X_3}$ [Fa,I-M,...]

$$egin{aligned} \mathsf{D}^{\mathsf{b}}(\widetilde{\mathsf{X}_3}) &= \langle \mathsf{A}_3, \mathcal{O}(-1), \mathcal{O}
angle; \ \mathbf{D}^{\mathsf{b}}(\widetilde{\mathsf{X}_{14}}) &= \langle \mathsf{A}_{14}, \mathsf{E}, \mathcal{O}
angle; \end{aligned}$$

with $A_3 \stackrel{equiv}{\cong} A_{14}$. Many other instances of this phenomenon for Fano 3folds. [Kuz]

Theorem (B-B)

A standard conic bundle X over a rational minimal surface is rational iff $D^{b}(X) = \langle D^{b}(C_{1}), \dots, D^{b}(C_{m}), E_{1}, \dots, E_{r} \rangle$.

If you prefer, iff X is categorically representable in dimension 1. Definition (B-B)

A triangulated category T is representable in dimension j if it admits a semiorthogonal decomposition

$$\mathbf{T} = \langle \mathbf{A}_1, \dots, \mathbf{A}_{\mathbf{I}} \rangle,$$

and for all i = 1, ..., l there exists a smooth projective connected variety Y_i with dim $Y_i \leq j$, such that A_i is equivalent to an admissible subcategory of $D^b(Y_i)$.

If Y is a smooth cubic 4fold, then

$$\mathsf{D}^{\mathsf{b}}(\mathsf{Y}) = \langle \mathsf{B}, \mathcal{O}(-2), \mathcal{O}(-1), \mathcal{O} \rangle.$$

Conjecture (Kuznetsov)

Y is rational iff $\mathbf{B} \cong \mathbf{D}^{\mathbf{b}}(\mathbf{S})$ for *S* a smooth projective K3 surface.

Question (B-B)

Is a rational projective variety always categorically representable in codimension 2?

Any smooth Fano variety admits a semi-orthogonal decomposition.

Question (Bondal)

Let X be a smooth projective variety. Does there exists a smooth Fano variety Y and a fully faithful functor $D^{b}(X) \rightarrow D^{b}(Y)$?

But in general : it is very hard to construct a SOD for $D^b(X)$. So far there exists only one effective way to find SOD, that is *Homological Projective Duality*.

HPD is a generalization of classical projective duality that involves SODs. These are of a particular kind, that is sensible to linear sections

Definition

A Lefschetz decomposition of $D^b(X)$ with respect to $\mathcal{O}_X(H)$ is a semiorthogonal decomposition

$$\mathsf{D}^{\mathsf{b}}(\mathsf{X}) = \langle \mathsf{A}_0, \mathsf{A}_1(\mathsf{H}), \dots, \mathsf{A}_{\mathsf{i}-1}((\mathsf{i}-1)\mathsf{H}) \rangle, \tag{1}$$

with $0 \subset A_{i-1} \subset \ldots \subset A_0$. Such a decomposition is said to be rectangular if $A_0 = \ldots = A_{i-1}$.

$$\mathsf{D}^{\mathsf{b}}(\mathsf{X} \cap \mathsf{H}) = \langle \mathsf{A}_1(\mathsf{H}), \dots, \mathsf{A}_{\mathsf{i}-1}((\mathsf{i}-1)\mathsf{H}) \rangle$$

What is HPD?

Let $W := H^0(X, \mathcal{O}_X(H))$, and $f : X \to \mathbb{P}W$ s.t. $f^*\mathcal{O}_{\mathbb{P}W}(1) \cong \mathcal{O}_X(H)$. Let $\mathcal{X} \subset X \times \mathbb{P}W^{\vee}$ be the universal hyperplane section of X

$$\mathcal{X} := \{ (x, H) \in X \times \mathbb{P}W^{\vee} | x \in H \}.$$

Definition

Let $f : X \to \mathbb{P}W$ be a smooth projective scheme with a base-point-free line bundle $\mathcal{O}_X(H)$ and a Lefschetz decomposition as above. A scheme Y with a map $g : Y \to \mathbb{P}W^{\vee}$ is called homologically projectively dual (or the HP-dual) to $f : X \to \mathbb{P}W$ with respect to the Lefschetz decomposition (1), if there exists a fully faithful functor $\Phi : \mathbf{D}^{\mathbf{b}}(\mathbf{Y}) \to \mathbf{D}^{\mathbf{b}}(\mathcal{X})$ giving the semiorthogonal decomposition

 $\mathsf{D}^b(\mathcal{X}) = \langle \Phi(\mathsf{D}^b(\mathsf{Y})), \mathsf{A}_1(1) \boxtimes \mathsf{D}^b(\mathbb{P}\mathsf{W}^\vee), \dots, \mathsf{A}_{i-1}(i-1) \boxtimes \mathsf{D}^b(\mathbb{P}\mathsf{W}^\vee) \rangle.$

Let $N = \dim(W)$, $c \leq N$ be an integer, $L \subset W$ a *c*-dimensional linear space. $\mathbb{P}_L := \mathbb{P}(W/L) \subset \mathbb{P}W$. Dually $\mathbb{P}^L = \mathbb{P}_L^{\perp} \subset \mathbb{P}W^{\vee}$.

$$X_L := X \times_{\mathbb{P}W} \mathbb{P}_L, \qquad Y_L := Y \times_{\mathbb{P}W^{\vee}} \mathbb{P}^L.$$

Theorem (K)

- If Y is HP-dual to X, then :
 - (i) Y is smooth projective and admits a dual Lefschetz decomposition

 $\mathsf{D}^\mathsf{b}(\mathsf{Y}) = \langle \mathsf{B}_{j-1}(1-j), \dots, \mathsf{B}_1(-1), \mathsf{B}_0\rangle, \quad \mathsf{B}_{j-1} \subset \dots \subset \mathsf{B}_1 \subset \mathsf{B}_0$

with respect to $\mathcal{O}_Y(H) = g^* \mathcal{O}_{\mathbb{P}W^{\vee}}(1)$.

(ii) if *L* is admissible, i.e. if

 $\dim X_L = \dim X - c$, and $\dim Y_L = \dim Y + c - N$,

then there exist a triangulated category ${\bm C}_{\bm L}$ and semiorthogonal decompositions :

$$\begin{split} D^b(X_L) &= \langle C_L, A_c(1), \dots, A_{i-1}(i-c) \rangle, \\ D^b(Y_L) &= \langle B_{j-1}(N-c-j), \dots, B_{N-c}(-1), C_L \rangle. \end{split}$$

Think for example if c > i...

Like classical projective duality, HPD involves singular varieties. More precisely :

Theorem (K)

The critical locus of the map $g : Y \to \mathbb{P}W^{\vee}$ is the classical projective dual X^{\vee} of X.

The presence of singular varieties requires another piece of our categorical tool kit, that is categorical resolutions of singularities.

Definition

A categorical resolution of singularities (X, A) of a possibly singular proper scheme X is a torsion free \mathcal{O}_X -algebra A of finite rank such that $\operatorname{Coh}(X, A)$ has finite homological dimension (i.e., is smooth in the noncommutative sense).

If X (or Y) is singular, then we replace $D^{b}(X)$ (or $D^{b}(Y)$) by a categorical resolution of singularities $D^{b}(X, A)$ (or $D^{b}(Y, B)$). The theorems hold in this more general framework, where we consider $D^{b}(X_{L}, A_{L})$ (resp. $D^{b}(Y_{L}, B_{L})$) for A_{L} (resp. B_{L}) the restriction of A to X_{L} (resp. of B to Y_{L})

There is a plethora of different definitions of categorical (or noncommutative) resolution of singularities. In this work, the sheaf that will provide a non-commutative resolution of singular determinantal varieties, will resolve them in the sense fo Van den Bergh, since the sheaf will be locally the endomorphism algebra of a reflexive sheaf. This also implies that it is a resolution in the sense of Kuznetsov (cf. Roland's talk). Let U, V be vector spaces, dim U = m, dim V = n, $n \ge m$. Set $W = U \otimes V$. Let $r \in \mathbb{Z}$ s.t. $1 \le r \le m - 1$. We define $\mathcal{Z}_{m,n}^r$ to be the variety of matrices $M : V \to U^{\vee}$ in $\mathbb{P}W$ cut by the minors of size r + 1 of the matrix of indeterminates :

$$\psi = \begin{pmatrix} x_{1,1} & \dots & x_{m,1} \\ \vdots & \ddots & \vdots \\ x_{m,n} & \dots & x_{m,n} \end{pmatrix}$$

i.e. the rank r locus.

Let $\mathbb{G}(U, r)$ be the Grassmannian of *r*-dimensional quotients of *U*. Let \mathcal{U} be the tautological sub-bundle and \mathcal{Q} the quotient bundle over $\mathbb{G}(U, r)$, resp. of rank m - r and *r*. The Euler sequence reads :

$$0 \to \mathcal{U} \to \mathcal{U} \otimes \mathcal{O}_{\mathbb{G}} \to \mathcal{Q} \to 0.$$
 (2)

We will use the following notation :

$$\mathcal{X}_{m,n}^r = \mathbb{P}(V \otimes \mathcal{Q}).$$

The manifold $\mathcal{X}_{m,n}^r$ has dimension r(n + m - r) - 1. It is the resolution of singularities of the variety $\mathcal{Z}_{m,n}^r$ of $m \times n$ matrices of rank at most r. It is commonly known as the *Springer resolution*.

Let $p: \mathcal{X}_{m,n}^r \to \mathbb{G}(U, r)$ be the natural projection. $H^0(\mathbb{G}, \mathcal{Q})$ is identified with U. Let $\mathcal{O}(H)$ be the relatively ample tautological line bundle on $\mathcal{X}_{m,n}^r$. We get :

$$H^0(\mathbb{G}, V \otimes \mathcal{Q}) \simeq H^0(\mathcal{X}^r_{m,n}, \mathcal{O}(H)) \simeq W = U \otimes V.$$

The map f associated with $\mathcal{O}(H)$ maps $\mathcal{X}_{m,n}^r$ to $\mathbb{P}W$, and $\mathcal{O}(H) \simeq f^*(\mathcal{O}_{\mathbb{P}W}(1))$. That is :

$$\begin{array}{c} \mathcal{X}_{m,n}^{r} \xrightarrow{f} \mathbb{P}W = \mathbb{P}(U \otimes V) \\ \stackrel{p}{\downarrow} \\ \mathbb{G} \end{array}$$

One can show that f is birational, the image is exactly $Z_{m,n}^r$ and, being an isomorphism over the matrices of rank exactly r, f gives a desingularization of $Z_{m,n}^r$.

More concretely, let $\lambda \in \mathbb{G}$ and π_{λ} be the linear projection from U^{\vee} to $U^{\vee}/\mathcal{Q}_{\lambda}^{\vee}$. Then, the variety $\mathcal{X}_{m,n}^{r}$ can be seen as :

$$\mathcal{X}_{m,n}^{r} = \{ (\lambda, M) \in \mathbb{G} \times \mathcal{Z}_{m,n}^{r} \mid \pi_{\lambda} \circ M = 0 \}.$$

Then, p and f are just the projections from $\mathcal{X}_{m,n}^r$ onto the two factors.

Dually, consider the projective bundle :

$$\mathcal{Y}_{m,n}^r = \mathbb{P}(V^{\vee} \otimes \mathcal{U}^{\vee}).$$

Let $q: \mathcal{Y}_{m,n}^r \to \mathbb{G}$ be the projection. Abusing notation, we denote by H the tautological ample line bundle on $\mathcal{Y}_{m,n}^r$. Since

 $H^0(\mathbb{G}, \mathcal{U}^{\vee}) \simeq U^{\vee}$, the linear system $|\mathcal{O}_{\mathcal{Y}_{m,n}^r}(H)|$ sends $\mathcal{Y}_{m,n}^r$ to $\mathbb{P}W^{\vee} \simeq \mathbb{P}(V^{\vee} \otimes U^{\vee})$ via a map g. The map g is a desingularization of the variety $\mathcal{Z}_{m,n}^{m-r}$ of matrices $V^{\vee} \to U$ in $\mathbb{P}W^{\vee}$ of corank at least r.

The non-commutative resolution

Consider $p: \mathcal{X}_{m,n}^r \to \mathbb{G}$ as rank-(rn-1) projective bundle. Hence [Or] we have :

$$\mathsf{D}^{\mathsf{b}}(\mathcal{X}^{\mathsf{r}}_{\mathsf{m},\mathsf{n}}) = \langle \mathsf{p}^{*}\mathsf{D}^{\mathsf{b}}(\mathbb{G}), \dots, \mathsf{p}^{*}\mathsf{D}^{\mathsf{b}}(\mathbb{G})((\mathsf{rn}-1)\mathsf{H}) \rangle. \tag{3}$$

 \mathbb{G} has a full strong exceptional collection [Ka] consisting of vector bundles, thus we obtain an exceptional collection on $\mathcal{X}_{m,n}^r$ consisting of vector bundles, and hence a tilting bundle E as the direct sum of these bundles. Let us set $M := Rf_*E$, and let $\mathcal{R} := \mathcal{E}nd(E)$ and $\mathcal{R}' := \mathcal{E}nd(M)$ (where $\mathcal{E}nd$ denotes the sheaf of endomorphisms).

Proposition

The endomorphism algebra $\mathcal{E}nd(M)$ is a coherent $\mathcal{O}_{\mathcal{Z}_{m,n}^{r}}$ -algebra Morita-equivalent to \mathcal{R} . In particular, $\mathbf{D}^{\mathbf{b}}(\mathcal{Z}_{\mathbf{m},\mathbf{n}}^{\mathbf{r}},\mathcal{R}') \simeq \mathbf{D}^{\mathbf{b}}(\mathcal{X}_{\mathbf{m},\mathbf{n}}^{\mathbf{r}})$ is a categorical resolution of singularities, which is crepant if m = n. Thanks to the preceding description, we can prove HPD directly from [Kuz]'s HPD for the projective bundles $\mathcal{X}_{m,n}^r$ and $\mathcal{Y}_{m,n}^r$. We consider the rectangular Lefschetz decomposition (3) for $\mathcal{X}_{m,n}^r$ with respect to $\mathcal{O}(H)$.

Theorem

The morphism $g : \mathcal{Y}_{m,n}^r \to \mathbb{P}W^{\vee}$ is the homological projective dual of $f : \mathcal{X}_{m,n}^r \to \mathbb{P}W$, relatively over \mathbb{G} , with respect to the rectangular Lefschetz decomposition (3) induced by $\mathcal{O}(H)$, generated by $nr\binom{m}{r}$ exceptional bundles.

HPD - a sketch of a proof.

Recall that $\mathcal{X}_{m,n}^{r} = \mathbb{P}(V \otimes \mathcal{Q})$ and $\mathcal{Y}_{m,n}^{r} = \mathbb{P}(V^{\vee} \otimes \mathcal{U}^{\vee})$ are projective bundles over \mathbb{G} . Set $\mathbf{A} = \mathbf{p}^{*}(\mathbf{D}^{\mathbf{b}}(\mathbb{G}))$. The decomposition (3) of the projective bundle $\mathcal{X}_{m,n}^{r} \to \mathbb{G}$ then reads :

$$\mathsf{D}^\mathsf{b}(\mathcal{X}^\mathsf{r}_{\mathsf{m},\mathsf{n}}) = \langle \mathsf{A},\mathsf{A}(\mathsf{H}),\ldots,\mathsf{A}((\mathsf{rn}-1)\mathsf{H})\rangle.$$

This is a rectangular Lefschetz decomposition with respect to $\mathcal{O}(H)$, generated by *nr* copies of [Ka]'s exceptional collection on \mathbb{G} , hence by $nr\binom{m}{r}$ exceptional bundles.

 $V \otimes Q$ and $V^{\vee} \otimes U^{\vee}$ are generated by their global sections, so we apply apply [Kuz]. The evaluation map of $V \otimes Q$ gives :

$$0 \to V \otimes \mathcal{U} \to \mathcal{W} \to V \otimes \mathcal{Q} \to 0.$$

Hence $V^{\vee} \otimes \mathcal{U}^{\vee}$ is the orthogonal of $V \otimes \mathcal{Q}$ in [Kuz]'s sense. Therefore [Corollary 8.3, Kuz] applies and gives the result. Note that $\mathbf{D}^{\mathbf{b}}(\mathcal{Y}_{\mathbf{m},\mathbf{n}}^{\mathbf{r}})$ is generated by $n(m-r)\binom{m}{r}$ exceptional vector bundles. This can be rephrased in terms of categorical resolutions. Hence one can state HPD as a duality between categorical resolutions of determinantal varieties given by matrices of fixed rank and corank.

Theorem

There is a $\mathcal{O}_{\mathcal{Z}_{m,n}^r}$ -algebra \mathcal{R}' such that $(\mathcal{Z}_{m,n}^r, \mathcal{R}')$ is a categorical resolution of singularities of $\mathcal{Z}_{m,n}^r$. Moreover, $\mathbf{D}^{\mathbf{b}}(\mathcal{Z}_{m,n}^{\mathbf{r}}, \mathcal{R}') \simeq \mathbf{D}^{\mathbf{b}}(\mathcal{X}_{m,n}^{\mathbf{r}})$ so that $(\mathcal{Z}_{m,n}^r, \mathcal{R}')$ is HP-dual to $(\mathcal{Z}_{m,n}^{m-r}, \mathcal{R}')$.

Consequences : semi-orthogonal decompositions of linear sections

Recall the notation : Let now c be an integer s.t. $1 \le c \le mn$, and suppose we a have c-dimensional vector subspace L of W :

$$L \subset U \otimes V = W.$$

We have the linear subspace $\mathbb{P}_L \subset \mathbb{P}W$ of codimension c, defined by $\mathbb{P}_L = \mathbb{P}(W/L)$ and dually $\mathbb{P}^L = \mathbb{P}L^{\perp}$ of dimension c - 1 in $\mathbb{P}W^{\vee}$, whose defining equations are the elements of $L^{\perp} \subset W^{\vee}$. We define the varieties :

$$X_L^r = \mathcal{X}_{m,n}^r \times_{\mathbb{P}W} \mathbb{P}_L, \qquad Y_L^r = \mathcal{Y}_{m,n}^r \times_{\mathbb{P}W^{\vee}} \mathbb{P}^L.$$

We also write :

$$Z_L^r = \mathcal{Z}_{m,n}^r \cap \mathbb{P}_L, \qquad Z_r^L = \mathcal{Z}_{m,n}^{m-r} \cap \mathbb{P}^L.$$

We will always assume that $L \subset W$ is an *admissible subspace*, which amounts to ask that X_L and Y_L have expected dimension.

Consequences : semi-orthogonal decompositions of linear sections

Suppose that $L \subset W$ is admissible of dimension c. (i) If c > nr, there is a fully faithful functor

$$\mathsf{D}^b(\mathsf{Z}_\mathsf{L},\mathcal{R}'_{\mathbb{P}_\mathsf{L}})\simeq\mathsf{D}^b(\mathsf{X}_\mathsf{L})\longrightarrow\mathsf{D}^b(\mathsf{Y}_\mathsf{L})\simeq\mathsf{D}^b(\mathsf{Z}^\mathsf{L}_\mathsf{r},\mathcal{R}'_{\mathbb{P}^\mathsf{L}})$$

whose complement is c - nr copies of $D^{b}(\mathbb{G})$.

(ii) If nr = c, there is an equivalence

$$D^b(Z_L, \mathcal{R}'_{\mathbb{P}_L}) \simeq D^b(X_L) \simeq D^b(Y_L) \simeq D^b(Z^L_r, \mathcal{R}'_{\mathbb{P}^L})$$

(iii) If c < nr, there is a fully faithful functor

$$D^b(Z^L_r, \mathcal{R}'_{\mathbb{P}^L}) \simeq D^b(Y_L) \longrightarrow D^b(X_L) \simeq D^b(Z_L, \mathcal{R}'_{\mathbb{P}_L})$$

whose complement is nr - c copies of $D^{b}(\mathbb{G})$.

Consequences : semi-orthogonal decompositions of linear sections

Call ϕ_K the canonical map of X_L . Write also ϕ_{-K} for the anticanonical map. P is the pull-back to $\mathbb{P}(V \otimes Q)$ of $c_1(Q)$.

Lemma

The canonical bundle of the linear section X_L is :

$$\omega_{X_L} \simeq \mathcal{O}_{X_L}((c-nr)H + (n-m)P).$$

- i) The variety X_L is Calabi-Yau if and only if m = n and c = nr.
- ii) If c > nr, or if c = nr and n > m, ϕ_K is a birational morphism onto its image.
- iii) If c < nr and m = n, ϕ_{-K} is a birational morphism onto its image. If moreover $X_L^{r-1} = \emptyset$, ϕ_{-K} is an embedding and X_L is Fano.

An analogous Lemma holds for $\mathcal{Y}_{m,n}^r$ and its linear section. The following table resumes the results.

	c < nr	c = nr	c > nr
Functor	$D^{b}(Y_{L}) ightarrow D^{b}(X_{L})$	equivalence	$D^b(X_L) o D^b(Y_L)$
$Y_L \rightarrow Z^L$	nef ω_{Y_L}	nef ω_{Y_L} if $n \neq m$	
	F. visitor if $n = m$	CY if $n = m$	Fano if $n = m$
$X_L \rightarrow Z_L$		nef ω_{X_L} if $n \neq m$	nef ω_{X_L}
	Fano if $n = m$	CY if $n = m$	F. visitor if $n = m$

TABLE – Behaviour of HPD functors according on c and nr.

The condition c = nr guarantees that HPD gives an equivalence of categories. Hence we obtain derived equivalences of Calabi-Yau manifolds for any n = m. Moreover a little argument shows :

Proposition

If c = nr then X_L is birational to Y_L .

If X_L is Calabi-Yau, then m = n and c = nr. Thus, in dimension 3, the derived equivalences would follow also from the work of [Bri].

Question

Aren't X_L and Y_L isomorphic?

There are infinitely many examples of birational, derived equivalent, non isomorphic X_L and Y_L , all of dimension at least 5. In all of them the canonical system is birational onto a hypersurface of general type contained in \mathbb{G} . First concrete example : (r, m, n) = (3, 5, 7), c = 21. The determinantal model of X_L (respectively, of Y_L) is the fivefold of degree 490 (respectively, 1176) cut in \mathbb{P}^{13} (respectively, in \mathbb{P}^{20}) by the 4 × 4 minors (respectively, the 3 × 3 minors) of a sufficiently general 5 × 7 matrix of linear forms. If r = 1 then $\mathcal{X}_{m,n}^1$ is just the Segre product $\mathbb{P}^{n-1} \times \mathbb{P}^{m-1}$ and $\mathcal{Y}_{m,n}^1$ is the Springer desingularization of the space of degenerate matrices.

In this case we have the following table of functors, where also rationality of varieties is highlighted.

	<i>c</i> < <i>m</i>	$m \le c < n$	c = n	n < c
Functor	$D^b(Y_L) o D^b(X_L)$		equivalence	$D^{b}(X_{L}) ightarrow D^{b}(Y_{L})$
Y _L	F. visitor		CY if $n = m$	Rational
				Fano if $n = m$
XL	Rational Fano	Rational	CY if $n = m$	F. visitor if $n = m$

TABLE – The Segre-determinantal duality.

Question

X smooth, projective. Is there any smooth Fano Y with a full and faithful functor $D^b(X) \rightarrow D^b(Y)$?

A weakly Fano-visitor is a variety (or more generally a triangulated category) whose derived category is FF-embedded in the categorical resolution of singularities of a Fano variety.

Proposition

Suppose that n = m. If c < rn, then Y_L^r and $(Z_r^L, \mathcal{R}'_{\mathbb{P}^L})$ are weakly Fano visitor. If c > nr, then X_L^r and $(Z_L^r, \mathcal{R}'_{\mathbb{P}_L})$ are weakly Fano visitor.

Corollary

Let $Z \subset \mathbb{P}^k$ be a determinantal variety associated to a generic $m \times n$ matrix. If k < m - 1 then the categorical resolution of singularities of Z is Fano visitor.

This corollary gives a positive answer to the Fano visitor problem for many classes of curves.

Plane curves.

Let $C \subset \mathbb{P}^2$ be a plane curve of degree $d \ge 4$. C can be written as the determinant of a $d \times d$ matrix of linear forms. We set m = n = d, k = 2. Hence any plane curve of degree at least four is a Fano-visitor, up to resolution of singularities. Since the blow-up of \mathbb{P}^3 along a plane cubic is Fano [BL], any plane curve of positive genus is a Fano-visitor.

More curves of general type

Determinantal varieties with $n \neq m$ provide examples of (non plane) curves of general type that are Fano-visitor. Setting $\dim(Y_L^1) = \dim(Z^L) = 1$, we have c = n - m + 3. Then Y_L^1 is an elliptic curve - a plane cubic - if m = n = c = 3. If m = 2 then the curve is rational for all n since c = n + 1, and if m > 3 it is a curve of general type in \mathbb{P}^{c-1} , which is Fano visitor if c < m. An update

[Kiem-Kim-Lee-Lee] The derived category of a smooth complete intersection variety is equivalent to a full subcategory of the derived category of a smooth projective Fano variety.

Definition

A triangulated category T is representable in dimension j if it admits a semiorthogonal decomposition

$$\mathbf{T} = \langle \mathbf{A}_1, \dots, \mathbf{A}_{\mathbf{I}} \rangle,$$

and for all i = 1, ..., l there exists a smooth projective connected variety Y_i with dim $Y_i \leq j$, such that A_i is equivalent to an admissible subcategory of $D^b(Y_i)$.

Question

Is a rational projective variety always categorically representable in codimension at least 2?

Corollary

The categorical resolution of a rational determinantal variety (r = 1) is categorically representable in codimension at least 2. A rational linear section of the Segre variety $\mathbb{P}^{n-1} \times \mathbb{P}^{m-1} \subset \mathbb{P}^{nm-1}$ is categorically representable in codimension at least 2.

Categorical resolution of the residual category of a determinantal Fano hypersurface

The Segre-determinantal HPD involves categorical resolutions for determinantal varieties, crepant if n = m. For Fano varieties, such resolution may give a crepant categorical resolution for nontrivial components of a semiorthogonal decomposition. We assume here r = 1 and m = n.

Proposition

Let F be a projective Gorenstein variety with rational singularities. Suppose that $\operatorname{Pic}(F) = \mathbb{Z}$, $\mathcal{O}_F(1)$ is its (ample) generator and $K_F = \mathcal{O}_F(-i)$, with i > 0. Then there is a semiorthogonal decomposition

$$D^b(F) = \langle \mathcal{O}_F(-i+1), \ldots, \mathcal{O}_F, T_F \rangle.$$

This holds in particular if $F \subset \mathbb{P}^k$ is an hypersurface of degree d < k with rational singularities (in which case, i = k - d + 1).

Homological Projective Duality allows us to describe a resolution of singularities of T_F in the case where F is determinantal.

Proposition

Let Z be a Fano determinantal hypersurface of \mathbb{P}^k , $p: Y \to Z$ its resolution, and X the dual section of the Segre variety. There is a strongly crepant categorical resolution $\widetilde{\mathbf{T}}_Z$ of \mathbf{T}_Z , admitting a semiorthogonal decomposition by $\mathbf{D}^{\mathbf{b}}(\mathbf{X})$ and (d-1)(k-d+1) exceptional objects.

In fact by mutating we obtain :

$$\mathsf{D}^{\mathsf{b}}(\mathsf{Y}) = \langle \mathsf{p}^*\mathcal{O}_{\mathsf{Z}}(-\mathsf{k}{+}\mathsf{d}), \dots, \mathsf{p}^*\mathcal{O}_{\mathsf{Z}}, \mathsf{E}_1, \dots, \mathsf{E}_{(\mathsf{k}-\mathsf{d}+1)(\mathsf{d}-1)}, \mathsf{D}^{\mathsf{b}}(\mathsf{X}) \rangle.$$

For determinantal cubic 3folds and 4folds, the dual "Segre" linear section X is empty. So, the numeric values give explicitly :

- If Z is a determinantal cubic threefold, then the category T_Z admits a crepant categorical resolution of singularities generated by 4 exceptional objects.
- If Z is a determinantal cubic fourfold, then the category T_Z admits a crepant categorical resolution of singularities generated by 6 exceptional objects.

In the case of cubic threefolds and fourfolds with only one node, categorical resolution of singularities of T_{Z} are described [Kuz]. We expect that these geometric descriptions carry over to the more degenerate case of determinantal cubics - which are all singular.

In the 3-dim. case, the 4 exc. obj. should correspond to a disjoint union of two rational curves, arising as the geometrical resolution of the discriminant locus of a projection $Z \to \mathbb{P}^3$ from one of the 6 singular points. This discriminant locus is composed by two twisted cubics intersecting in 5 points, a degeneration of the (3,2) complete intersection curve from the one-node case.

In the 4-dim. case, the 6 exc. obj. should correspond to a disjoint union of two Veronese-embedded planes (projected to \mathbb{P}^4), arising as the geometrical resolution of the discriminant locus of a projection $Z \to \mathbb{P}^4$ from one singular point. This discriminant locus is composed by two cubic scrolls intersecting along a quintic elliptic curve, a degeneration of the degree 6 K3 from the one-node case [Kuz].

THANK YOU!