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Semi-orthogonal decompositions

Let X be a smooth projective algebraic variety.
Definition
A semiorthogonal decomposition of D®(X) is an ordered sequence
of full admissible triangulated subcategories Ay, . .., A, of DP(X)
such that :
» Homps(x)(Ai, Aj) = 0 for all i > j and
» for all objects A; of Aj and A; of A; and for every object T of
D®(X), there is a chain of morphisms
0=T,— Tp—1 — -+ — T1 — To = T such that the cone of
Ty — Tk_1 is an object of A for all 1 < k < n.

Such a decomposition will be written

D°(X) = (Aq,...,A,).
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SOD and exceptional objects

Definition

An object E of DP(X) is exceptional if Hompe(x)(E, E) = C and
Hompe(x)(E, E[i]) = 0 for all i # 0. An ordered sequence

(Ex, ..., E)) of exceptional objects is an exceptional collection if
Hompex)(E;, Ex[i]) = 0 for all j > k and for all i € Z.

SOD is a strong property, there exists varieties that have no SOD
at all.

» Calabi-Yau varieties

> postive genus curves
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The importance of being SOD

» SODs seem to encode the birational geometry of algebraic
varieties (Ex : cubic 3fold and Fano Xi4)

» rationality questions (Ex : conic bundles, cubic 4folds)

» Fano visitor problem
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Birational geometry

X3 C P* the smooth cubic threefold.
X4 = Gr(2 6) N P P the smooth Fano 3fold of degree 14.
Any X14 is birational to a given X3 [Fa,I-M,.. ]

D°(X3) = (A3,0(-1),0);
D®(X14) = (A4, E, O);

equiv
with A3 = Aj4. Many other instances of this phenomenon for
Fano 3folds. [Kuz]
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Rationality questions

Theorem (B-B)

A standard conic bundle X over a rational minimal surface is
rational iff DP(X) = (DP(Cy),...,D?(Cm), Eq, ..., E).

If you prefer, iff X is categorically representable in dimension 1.
Definition (B-B)

A triangulated category T is representable in dimension j if it
admits a semiorthogonal decomposition

T=(A1,...,A),
and for all i = 1,...,1 there exists a smooth projective connected

variety Y; with dim Y; < j, such that A; is equivalent to an
admissible subcategory of DP(Y;).
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Rationality questions

If Y is a smooth cubic 4fold, then
D*(Y) = (B,0(-2),0(-1),0).

Conjecture (Kuznetsov)
Y is rational iff B =2 D®(S) for S a smooth projective K3 surface.
Question (B-B)

Is a rational projective variety always categorically representable in
codimension 2?7
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Fano visitor problem

Any smooth Fano variety admits a semi-orthogonal decomposition.

Question (Bondal)

Let X be a smooth projective variety. Does there exists a smooth
Fano variety Y and a fully faithful functor D®(X) — DP(Y) ?

But in general : it is very hard to construct a SOD for D®(X). So
far there exists only one effective way to find SOD, that is
Homological Projective Duality.
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What is HPD ?

HPD is a generalization of classical projective duality that involves
SODs. These are of a particular kind, that is sensible to linear
sections

Definition
A Lefschetz decomposition of DP(X) with respect to Ox(H) is a
semiorthogonal decomposition

D(X) = (Ag, A1(H)...., Ai_1((i — 1)H)), (1)

with 0 C Aj_1 C ... C Ag. Such a decomposition is said to be
rectangular if Ag = ... = Aj_1.

DP(X N H) = (Ay(H)..... A_1((i — 1)H))
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What is HPD ?

Let W := HO(X,Ox(H)), and f : X — PW st.
*Opw (1) = Ox(H). Let X C X x PWY be the universal
hyperplane section of X

X = {(x,H) € X x PW"Y|x € H}.

Definition

Let f : X — PW be a smooth projective scheme with a
base-point-free line bundle Ox(H) and a Lefschetz decomposition
as above. A scheme Y with amap g: Y — PWV is called
homologically projectively dual (or the HP-dual) to f : X — PW
with respect to the Lefschetz decomposition (1), if there exists a
fully faithful functor & : DP(Y) — DP(X) giving the
semiorthogonal decomposition

D°(X) = (®(D"(Y)), A1 (1)RKDP(PWY), ..., Ai_1(i—1)KDP(PWVY)).
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HPD's consequences

Let N = dim(W), ¢ < N be an integer, L C W a c-dimensional
linear space. P, := P(W/L) C PW . Dually Pt =P} c PWV.

X[_ =X XPwW IP)L, Y[_ =Y XPwVv PL.

Theorem (K)
If'Y is HP-dual to X, then :

(i) Y is smooth projective and admits a dual Lefschetz
decomposition

D°(Y) = (B;_1(1-j),...,B1(~1),Bp), Bj_1C...CB1CBy

with respect to Oy (H) = g*Opwv (1).
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HPD's consequences

(i) if L is admissible, i.e. if
dmX; =dimX —c¢, and dimY,=dimY +c— N,

then there exist a triangulated category Cp and
semiorthogonal decompositions :

Db(xl-) = <C|-a AC(1)7 R Ai—l(i - C)>7

D°(Y.) = (Bj-1(N—c—j),...,Bn_(~1),CL).
Think for example if ¢ > i...
Like classical projective duality, HPD involves singular varieties.
More precisely :

Theorem (K)

The critical locus of the map g : Y — PWV s the classical
projective dual XV of X.
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Categorical resolutions of singularities

The presence of singular varieties requires another piece of our
categorical tool kit, that is categorical resolutions of singularities.

Definition

A categorical resolution of singularities (X, A) of a possibly
singular proper scheme X is a torsion free Ox-algebra A of finite
rank such that Coh(X, .A) has finite homological dimension ( i.e.,
is smooth in the noncommutative sense).

If X (or Y) is singular, then we replace D?(X) (or DP(Y)) by a
categorical resolution of singularities DP(X,.A) (or DP(Y, B)). The
theorems hold in this more general framework, where we consider
DP(Xy, AL) (resp. DP(Y,BL)) for A, (resp. By) the restriction of
A to X; (resp. of B to Y})
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Categorical resolutions : a clarification

There is a plethora of different definitions of categorical (or
noncommutative) resolution of singularities. In this work, the sheaf
that will provide a non-commutative resolution of singular
determinantal varieties, will resolve them in the sense fo Van den
Bergh, since the sheaf will be locally the endomorphism algebra of
a reflexive sheaf. This also implies that it is a resolution in the
sense of Kuznetsov (cf. Roland’s talk).
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Determinantal varieties and Springer resolution

Let U, V be vector spaces, dmU = m, dimV = n, n > m. Set
W=U®V.LletreZst. 1<r<m-1 Wedefine Z/ , to be
the variety of matrices M : V — UY in PW cut by the minors of
size r + 1 of the matrix of indeterminates :

X1,1 -+ Xm,l
1/} =

Xm,n -+ Xmon

i.e. the rank r locus.
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Determinantal varieties and Springer resolution

Let G(U, r) be the Grassmannian of r-dimensional quotients of U.
Let U be the tautological sub-bundle and Q the quotient bundle
over G(U, r), resp. of rank m —r and r. The Euler sequence reads :

0—-U—->U®0; = Q—0. (2)
We will use the following notation :
Xpn=P(V®Q).

The manifold &7, , has dimension r(n+ m —r) — 1. It is the
resolution of singularities of the variety Z/, , of m X n matrices of
rank at most r. It is commonly known as the Springer resolution.
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Determinantal varieties and Springer resolution

Let p: X7, , — G(U, r) be the natural projection. H°(G, Q) is
identified with U. Let O(H) be the relatively ample tautological
line bundle on Xy, . We get :

H(G,V ® Q) ~ HY (&L ,,O(H) ~W =U® V.

m,n>

The map f associated with O(H) maps &}, , to PW, and
O(H) ~ *(Opw(1)). That is :

Xp = PW =P(U V)
P
G
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Determinantal varieties and Springer resolution

One can show that f is birational, the image is exactly Z, , and,
being an isomorphism over the matrices of rank exactly r, f gives a
desingularization of Z7, .

More concretely, let A € G and 7 be the linear projection from
UY to UY/Q}. Then, the variety X7, can be seen as :

Xpn={(\M)eGx Z;, | myoM=0}.

Then, p and f are just the projections from X7, onto the two
factors.
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Determinantal varieties and Springer resolution

Dually, consider the projective bundle :

ro=P(VYeuY).
Let g : YV, , = G be the projection. Abusing notation, we denote
by H the tautological ample line bundle on Yy, . Since

HY(G,U") =~ U, the linear system |Oy, (H)| sends Y, , to
PWY ~P(VY @ UV) via a map g. The map g is a
desingularization of the variety Z/7°" of matrices VYV — Uin
PW"Y of corank at least r.
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The non-commutative resolution

Consider p : X, , — G as rank—(rn — 1) projective bundle. Hence
[Or] we have :

D®(Xmn) = (P'D°(G),....p*D°(G)((m —1)H)).  (3)

G has a full strong exceptional collection [Ka] consisting of vector
bundles, thus we obtain an exceptional collection on X7, ,
consisting of vector bundles, and hence a tilting bundle E as the
direct sum of these bundles. Let us set M := Rf.E, and let

R :=End(E) and R’ := End(M) (where End denotes the sheaf of
endomorphisms).

Proposition

The endomorphism algebra End(M) is a coherent O z;, -algebra
Morita-equivalent to R. In particular, Db(Z,'mn, R') ~ Db(X,:w) is

a categorical resolution of singularities, which is crepant if m = n.
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HPD as projective bundles

Thanks to the preceding description, we can prove HPD directly
from [Kuz]'s HPD for the projective bundles X, , and Y/, . We
consider the rectangular Lefschetz decomposition (3) for &7, , with
respect to O(H).

Theorem

The morphism g : Yy, , — PWV is the homological projective dual
of f: Xy, , = PW, relatively over G, with respect to the
rectangular Lefschetz decomposition (3) induced by O(H),
generated by nr(':’) exceptional bundles.
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HPD - a sketch of a proof.

Recall that X}, =P(V ® Q) and Y}, , = P(VV @UY) are
projective bundles over G. Set A = p*(D®(G)). The decomposition
(3) of the projective bundle X, , — G then reads :

DP(X.) = (A,A(H),...,A((rn — 1)H)).

This is a rectangular Lefschetz decomposition with respect to
O(H), generated by nr copies of [Ka]'s exceptional collection on
G, hence by nr(T) exceptional bundles.

V® Q and VYV @ U are generated by their global sections, so we
apply apply [Kuz]. The evaluation map of V ® Q gives :

Oo—-VU—-W-=V9—0.

Hence VY @ UV is the orthogonal of V ® Q in [Kuz]'s sense.
Therefore [Corollary 8.3, Kuz| applies and gives the result. Note
that DP()), ) is generated by n(m — r)("T") exceptional vector
bundles.

Michele Bolognesi HPD for determinantal varieties



HPD - non commutative sense

This can be rephrased in terms of categorical resolutions. Hence
one can state HPD as a duality between categorical resolutions of
determinantal varieties given by matrices of fixed rank and corank.

Theorem

There is a Oz; -algebra R' such that (2}, ,,R') is a categorical
resolution of singularities of Z . n- Moreover,

Db(Z,'n?n,R’) ~ DP(XF, ) so that (Zm.n»R') is HP-dual to
(mer R/)

m,n >
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Consequences : semi-orthogonal decompositions of linear

sections

Recall the notation : Let now ¢ be an integer s.t. 1 < ¢ < mn, and
suppose we a have c-dimensional vector subspace L of W :

LCcUpV=W.

We have the linear subspace P; C PW of codimension ¢, defined
by P, = P(W/L) and dually Pt = PL* of dimension ¢ — 1 in
PWV, whose defining equations are the elements of L+ c WY. We
define the varieties :

X[ = Xr:r,n XPw IP)L, Yl_r = y,’,w XPWV PL.
We also write :
zZ[ =2, NP, ZF=2z7 NP

We will always assume that L C W is an admissible subspace,
which amounts to ask that X; and Y, have expected dimension.
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Consequences : semi-orthogonal decompositions of linear

sections

Suppose that L C W is admissible of dimension c.
(i) If ¢ > nr, there is a fully faithful functor

D(Zy, Rp,) ~ DP(XL) — DP(YL) ~ D®(ZL, Rp.)

whose complement is ¢ — nr copies of D?(G).

(ii) If nr = c, there is an equivalence
DP(Z,, Rp,) ~ DP(XL) ~ D®(Y,) ~ D®(Z}, R}.)
(iii) If ¢ < nr, there is a fully faithful functor
D®(Z}, Rj) ~ DP(YL) — D°(X,) ~ D®(Z,, R},)
whose complement is nr — ¢ copies of D?(G).
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Consequences : semi-orthogonal decompositions of linear

sections

Call ¢k the canonical map of X;. Write also ¢_k for the
anticanonical map. P is the pull-back to P(V ® Q) of ¢1(Q).

Lemma

The canonical bundle of the linear section X is :

wx, =~ Ox,((c —nr)H+ (n— m)P).

i) The variety X, is Calabi-Yau if and only if m = n and ¢ = nr.

i) If c> nr, orifc=nr and n > m, ¢ is a birational morphism
onto its image.

iii) If c < nrand m=n, ¢_g is a birational morphism onto its
image. If moreover X[_l =0, ¢_k is an embedding and X, is
Fano.
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HPD - Table of the functors

An analogous Lemma holds for V7, , and its linear section. The
following table resumes the results.

] Hc<nr \c:nr \c>nr \
[ Functor  [| D(YL) = DP(Xy) [ equivalence | DP(X.) — D(Y,) |
Y, = ZL || nef Wy, nef wy, ifn# m
F.visitorif n=m | CYifn=m Fanoif n=m
XL — Z nef wx, ifn# m | nef wx,
Fanoif n=m CYitn=m F. visitor if n=m

TABLE — Behaviour of HPD functors according on ¢ and nr.
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Birational and equivalent linear sections

The condition ¢ = nr guarantees that HPD gives an equivalence of
categories. Hence we obtain derived equivalences of Calabi-Yau
manifolds for any n = m. Moreover a little argument shows :
Proposition

If ¢ = nr then X, is birational to Y.

If X; is Calabi-Yau, then m = n and ¢ = nr. Thus, in dimension 3,
the derived equivalences would follow also from the work of [Bri].
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Birational and equivalent linear sections

Question
Aren’t X; and Y, isomorphic?

There are infinitely many examples of birational, derived
equivalent, non isomorphic X; and Y}, all of dimension at least 5.
In all of them the canonical system is birational onto a
hypersurface of general type contained in G. First concrete
example : (r,m,n) = (3,5,7), c = 21. The determinantal model of
X1 (respectively, of Y}) is the fivefold of degree 490 (respectively,
1176) cut in P13 (respectively, in P2°) by the 4 x 4 minors
(respectively, the 3 x 3 minors) of a sufficiently general 5 x 7
matrix of linear forms.
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Segre-determinantal duality

If r =1 then X,  is just the Segre product P"~! x P™~! and
y,l,w is the Springer desingularization of the space of degenerate
matrices.

In this case we have the following table of functors, where also

rationality of varieties is highlighted.

c<m \m§c<n c=n n<c
Functor DP(Y.) — DP(X.) equivalence | DP(X.) — DP(Yy)
Y. F. visitor CY if n= m | Rational
Fanoif n=m
XL Rational Fano | Rational CYifn=m | F.visitorif n=m

TABLE — The Segre-determinantal duality.
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Representability into Fano varieties, Fano visitors

Question

X smooth, projective. Is there any smooth Fano Y with a full and
faithful functor D?(X) — DP(Y) ?

A weakly Fano-visitor is a variety (or more generally a triangulated
category) whose derived category is FF-embedded in the
categorical resolution of singularities of a Fano variety.

Proposition
Suppose that n = m. If ¢ < rn, then Y[ and (Z},Ry,) are weakly

Fano visitor. If ¢ > nr, then X[ and (Z[,Rp,) are weakly Fano
visitor.

Corollary

Let Z C PX be a determinantal variety associated to a generic
m x n matrix. If k < m — 1 then the categorical resolution of
singularities of Z is Fano visitor.
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Curves visiting Fano varieties

This corollary gives a positive answer to the Fano visitor problem
for many classes of curves.

Plane curves.

Let C C P? be a plane curve of degree d > 4. C can be written as
the determinant of a d x d matrix of linear forms. We set

m = n=d, k = 2. Hence any plane curve of degree at least four is
a Fano-visitor, up to resolution of singularities. Since the blow-up
of P2 along a plane cubic is Fano [BL], any plane curve of positive
genus is a Fano-visitor.

Michele Bolognesi HPD for determinantal varieties



Curves visiting Fano varieties

More curves of general type

Determinantal varieties with n # m provide examples of (non
plane) curves of general type that are Fano-visitor. Setting
dim(Y}) = dim(Z%) = 1, we have c = n— m+3. Then Y} is an
elliptic curve - a plane cubic - if m=n = c = 3. If m = 2 then the
curve is rational for all nsince c =n-+1, and if m > 3 it is a curve
of general type in P71, which is Fano visitor if ¢ < m.

An update

[Kiem-Kim-Lee-Lee| The derived category of a smooth complete
intersection variety is equivalent to a full subcategory of the
derived category of a smooth projective Fano variety.
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Categorical representability

Definition
A triangulated category T is representable in dimension j if it
admits a semiorthogonal decomposition

T=(A1,...,A),

and for all i = 1,..., 1 there exists a smooth projective connected
variety Y; with dim Y; < j, such that A; is equivalent to an
admissible subcategory of DP(Y;).

Question
Is a rational projective variety always categorically representable in
codimension at least 2?7
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Categorical representability

Corollary

The categorical resolution of a rational determinantal variety

(r = 1) is categorically representable in codimension at least 2. A
rational linear section of the Segre variety P"~% x P™—1 c Prm—1 js
categorically representable in codimension at least 2.
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Categorical resolution of the residual category of a

determinantal Fano hypersurface

The Segre-determinantal HPD involves categorical resolutions for
determinantal varieties, crepant if n = m. For Fano varieties, such
resolution may give a crepant categorical resolution for nontrivial
components of a semiorthogonal decomposition. We assume here
r=1and m=n.

Proposition

Let F be a projective Gorenstein variety with rational singularities.
Suppose that Pic(F) = 7Z, Og(1) is its (ample) generator and

Kr = Op(—1i), with i > 0. Then there is a semiorthogonal
decomposition

D°(F) = (O(—i+1),...,0F, Tg).

This holds in particular if F C PX is an hypersurface of degree
d < k with rational singularities (in which case, i = k —d +1).
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Categorical resolution of the residual category of a

determinantal Fano hypersurface

Homological Projective Duality allows us to describe a resolution of
singularities of Tf in the case where F is determinantal.

Proposition

Let Z be a Fano determinantal hypersurface of PK, p: Y — Z its
resolution, and X the dual section of the Segre variety. There is a
strongly crepant categorical resolution Tz of Tz, admitting a
semiorthogonal decomposition by DP(X) and (d — 1)(k —d + 1)
exceptional objects.

In fact by mutating we obtain :
DP(Y) = (p*Oz(—k+d),...,p*Oz,E1, ..., E_ds1yd—1), D*(X)).
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Determinantal cubic 3folds and 4folds

For determinantal cubic 3folds and 4folds, the dual " Segre” linear
section X is empty. So, the numeric values give explicitly :

» If Z is a determinantal cubic threefold, then the category T,
admits a crepant categorical resolution of singularities
generated by 4 exceptional objects.

» If Z is a determinantal cubic fourfold, then the category Tz
admits a crepant categorical resolution of singularities
generated by 6 exceptional objects.

In the case of cubic threefolds and fourfolds with only one node,
categorical resolution of singularities of Tz are described [Kuz]. We
expect that these geometric descriptions carry over to the more
degenerate case of determinantal cubics - which are all singular.

Michele Bolognesi HPD for determinantal varieties



Determinantal cubic 3folds and 4folds - Expectations

In the 3-dim. case, the 4 exc. obj. should correspond to a disjoint
union of two rational curves, arising as the geometrical resolution
of the discriminant locus of a projection Z — P3 from one of the 6
singular points. This discriminant locus is composed by two twisted
cubics intersecting in 5 points, a degeneration of the (3,2)
complete intersection curve from the one-node case.

In the 4-dim. case, the 6 exc. obj. should correspond to a disjoint
union of two Veronese-embedded planes (projected to IP*), arising
as the geometrical resolution of the discriminant locus of a
projection Z — P* from one singular point. This discriminant locus
is composed by two cubic scrolls intersecting along a quintic
elliptic curve, a degeneration of the degree 6 K3 from the one-node
case [Kuz].
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THANK YOU'!
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