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Intro & set up

M., »(k): matrices of size a x b over a field k

A vector subspace V' C M, (k) (of dimension n+1) is a
space of matrices of constant rank
if all its nonzero elements have fixed rank r.

Main questions:

1. Determine /(a, b, r): max dim V, and give relations among
the possible values of the parameters a, b, r, n.

2. Classification for fixed values of a, b, r, n.

3. Construction of examples.



Spaces of matrices ~~ vector bundles

We look at the n + 1-dim’'l space V as an a x b matrix whose
entries are linear forms (a l/inear matrix), and interpret the cokernel
as a vector space varying smoothly over P”, i.e. a vector bundle!

We get an exact sequence:

0—>K—=Opr(-m—1)> —Y ~ Op(—m)? —~E —0

\/

&

with K, £, and E v.b. on P" of rank b —r, r, and a — r resp.

Remark. The idea of using v.b. to study and construct linear
matrices of constant rank dates back to [Sylvester '86].



Some results

o [Westwick '87] b—r+1</{(a,b,r)<a+b—-2r+1
for 2 < r < a< b (not sharp)

o [Ellia-Menegatti "15] effective value of ¢(a, r) for a < 10
o [llic-Landsberg '99] lsym(r +2,r) =3

e [Manivel-Mezzetti '05] classification of spaces of skew-symm
matrices of size 6 and constant rank 4, (g, (6,4) = 3

e [Fania-Mezzetti '11] classification of spaces of skew-symm
matrices of size 8 and constant rank 6, {ske, (8,6) = 3

e [B.-Mezzetti '15] classification of m-effective pairs (c1, )
+ explicit construction for all pairs

(m-effective: there exists a 3-dim'l space of skew-symm matrices of
size 2c; + 2, constant rank 2¢;, whose cokernel E has ¢;(E) = ¢;)



Looking for explicit examples

Possible approaches:
* “ad hoc” construction, e.g. [Westwick '90], or

* projection from bigger size matrices.

Why projecting? The smaller n — r is, the easier it becomes to find
indecomposable rank r bundles on P”,

so a good strategy consists in first building a bigger matrix, and
then projecting it to a smaller one of the same constant rank.

Cutting down columns (rows) < taking a quotient of K (resp. E)

Example. All m-effective bundles appearing in [B.-Mezzetti '15] are
quotients of bundles of the form:

(®i>10p2(i)%) @ QP with i > 1, a;, b > 0 for all /.



Small corank

The projection technique was also used in [Fania-Mezzetti '11], but
it does not work for “small corank”:

Proposition. Let V be a linear space of a X b matrices of constant
rank r, and dim = n+ 1. V induces by projection a space V' of

a X (8 matrices of the same constant rank r and dimension n+ 1
foranya>r+nand 8> r+n.

Corollary. n + 1-dim’'l spaces of matrices of constant rank cannot
be constructed via projection as soon as n > min{a—r, 3 — r}.

We say that an n+ 1-dim’l space of a X b matrices of constant
rank r has small corank if n > min{a —r,b—r}.



Vector bundles ~~ spaces of matrices?

[B.-Faenzi-Mezzetti '13]: method to prove existence of families of
4-dim’l spaces of skew-symmetric matrices of constant corank 2
(so small corank!)

Restart from the exact sequence:

0—K— Opn(—m — l)be(’)]pn(—m)a —E—=0



Vector bundles ~~ spaces of matrices?

[B.-Faenzi-Mezzetti '13]: method to prove existence of families of
4-dim’l spaces of skew-symmetric matrices of constant corank 2
(so small corank!)

Restart from the exact sequence in the skew-simm. case:
0—E*(—2m — 1) = Ops(—m — 1)"*2 — Ops(—m) 2 —~ E -0
We get a distinguished element
n € Ext*(E, E*(—2m — 1)) ~ Hom pe(psy(E, E*(—2m — 1)[2]).
For all t € Z, the cup product with 1 induces maps:
pe : HO(E(t)) — H2(E*(—2m — 1+ t)).

Our distinguished elt. gives non-degeneracy conditions on the p's.



Vector bundles ~~ spaces of matrices?

Idea: take Cone(n), the cone of the morphism 7, and decompose
it with respect to the standard exceptional collection
(Ops(—m — 2), Ops(—m — 1), Ops(—m), Ops(—m + 1)).

Theorem |. (B.-Faenzi-Mezzetti)
E: rank 2 vector bundle on P3 “with the right invariants” .
The existence of a distinguished elt. 7 € Ext?(E, E*(—2m — 1))
inducing the non-degeneracy conditions on the maps p;'s

is equivalent to
the existence of a linear matrix V, having size r + 2, constant
rank r, and a twist of E as its cokernel.

Such matrix appears as differential in the decomposition of
Cone(n), and moreover it is necessarily skew-symmetrizable.



Instanton bundles & spaces of matrices

The non-degeneracy conditions in Theorem | are hard to check!
It can be done in the following cases:
Theorem Il. (B.-Faenzi-Mezzetti)

e Any 2-instanton on P3 induces a skew-symmetric matrix of
linear forms in 4 variables having size 10 and constant rank 8.

e General 4-instantons on P2 induce a skew-symmetric matrix of
linear forms in 4 variables having size 14 and constant rank 12.

Problem: these results are non-constructive!



Looking for a constructive algorithm

Remember: we want a construction vector bundle ~~ linear matrix.
So let E: v.b. on P" = Proj(R), R =k[xo,...,Xn].

First idea: look at its minimal free resolution. Even better, resolve
- - E_ o _ 0
its module of sections: E = H;(E) = @,., H (E(t)).

It is a graded R-module with graded Betti numbers 3; ; and
minimal free resolution:

ey EB R(—j1)vn —s @ R(—jo)%0 —s E
)l Jo

This is of course too naive. The resolution is not /inear in general!



Linear presentation, m-linearity

A graded R-module E has m-linear resolution over R if its minimal
graded free resolution, for suitable integers 3; my;, is of type:

- R(—m —2)Pamz s R(—m — 1)Prmit — R(—m)Pom — E

That is, E has a m-linear resolution if:
1. E,=0for r <m,
2. E is generated by E,;,, and

3. E has a resolution where all the maps are represented by
matrices of linear forms.

E is m-linearly presented up to order k, or just linearly presented
when k =1, if only the first k maps are matrices of linear forms.



Truncated modules and regularity

We can get around the non-linearity of the resolution of E by
truncating the graded module “in the right spot”,

namely its regularity reg(E).

(Can be computed as max{j — i | i # 0}.)

Indeed, if E = D,y Et, then Expy = D> Er and Ex o5 (k)
always has m-linear resolution. a

So we got linearity, but we still need something a bit more
sophisticated! To begin with, we lost control over the size of the
matrix (in general it will be too big!)

(Vague) idea: “cut off a piece” of the linear matrix from the
linear resolution of Ex (), without modifying the rank.



Cutting off pieces of a linear resolution

Construction from [B.-Faenzi-Lella '16]: let E and G be f.g.
graded R-modules with minimal graded free resolutions:

1 0
G 81 G 80



Cutting off pieces of a linear resolution

Construction from [B.-Faenzi-Lella '16]: let E and G be f.g.
graded R-modules with minimal graded free resolutions:

morphism induces
maps , det. up
to chain homotopy.

El €1 EO €
(E and G lin presented up to
order j = the pu''s are
uniquely det. for i <j—1.) G! o GO p



Cutting off pieces of a linear resolution

Construction from [B.-Faenzi-Lella '16]: let E and G be f.g.

graded R-modules with minimal graded free resolutions:

morphism induces ? ?
maps , det. up
to chain homotopy. Fl_&_ po_<
(E and G lin presented up to
order j = the pu'’s are
. . . 1 0
uniquely det. for i <j —1.) e G —> G —

What can we say about the resolution of the kernel F?



Cutting off pieces of a linear resolution

Theorem A. (B.-Faenzi-Lella)
E and G: m-lin presented R-modules, resp. up to order 1 and 2
u: E — G a surjective morphism, and z''s the induced maps
Then F = ker(y) is generated in deg m and m + 1, and moreover:
1. if u! is surjective, F is generated in deg m and has linear and
quadratic syzygies, and [o,m(F) = Bo.m(E) — 5o.m(G);
2. if moreover 12 is surjective, F is linearly presented and
B1,m+1(F) = B1,m+1(E) — B1,m+1(G).



Cutting off pieces of a linear resolution

Theorem A. (B.-Faenzi-Lella)
E and G: m-lin presented R-modules, resp. up to order 1 and 2

1 : E — G a surjective morphism, and p''s the induced maps
Then F = ker(p) is generated in deg m and m + 1, and moreover:

1. if ! is surjective, F is generated in deg m and has linear and
quadratic syzygies, and 8o, m(F) = o m(E) — Bo,m(G);

o> R(—m—1)"" — R(—m)® % —F

l |

w—=R(-m—-2)*2 — R(-m—1)" —— R(—m)* ——E

e | s |

—=R(-m-2)2? —=R(—m - 1" ——= R(—m)"* —G



Looking for constant rank matrices

Our goal is to construct constant rank matrices from v.b.
What happens if the sheaves E = E and G = G are v.b.?

Theorem B. (B.-Faenzi-Lella)
In the assumptions of Theorem A part 1, suppose also that:
(i) E=Eand G =G are v.b. on P" of rank r and s respectively;

(ii) some extra “technical condition” holds.

Set a = Bo,m(E) — Bo,m(G) and b = B1 m+1(E) — B1,m+1(G).
Then the presentation matrix V' of F = ker(u) has a linear part of
size a X b and constant corank r — s.

Moreover F = F is isomorphic to the kernel of i E— G.

Remark. ;2 surjective z technical condition



(A lot of) explicit examples!

In the applications we consider the case when G =0, i.e. G
Artinian module, so in particular F = F~E=E.

What do we get?
A veritable factory of examples of constant rank matrices!
Why is it good?
* can implement the method on a computer
(Macaulay2 packages available online)

* explicit examples in several cases

Why is it better than previously existing methods?

* can avoid cumbersome computations

* the method goes beyond projection method and works for
small corank!



It all comes together

Let's go back to:
0— K(t) = Opa(—m — 14 ) — Opn(—m + t)? — E(t) — 0.

We saw that an exact sequence of this type corresponds to an
element 7 € Ext?(E, K), which via cup product induces maps

e - HO(E(t)) — H2(K(t)).
~~ cup product with 7 gives: 1 = @:pr : HA(E) — H2(K).
This is a morphism, homogeneous of degree 0.

For n > 3 both cohomology groups H*(Opn(—m 4 t)) and
H2(Opn(—m — 1 + t)) vanish for all t, so j is surjective.

So we are in a good position to apply Theorem B!



It all comes together

Set E = HY(E) and M = H2(K),
and define ® as the linear map induced by the pu:'s:

¢ : Ext’(E, K) — Homg(E, M),

Theorem |, revisited.

Let n>3and V: R(—m —1)? — R(—m)? skew-symmetrizable of
constant rank. Set K = ker V' and E = Coker V.

Then K ~ E*(—2m — 1), and 3 1) € H?(S?E*(—2m — 1)) under
the canonical decomposition

Ext’(E, E*(—2m—1)) ~ H*(S%E*(—2m—1))@H?*(A2E*(—2m—1))
such that V/ presents ker ®(n).

Conversely, if 7 € H2(S2E*(—2m — 1)), pn = ®(n) satisfies
Theorem B, and ker V ~ E*(—2m — 1), V is skew-symmetrizable.




One explicit example

Theorem Il, revisited.

When E is a 2-instanton bundle or a generic 4-instanton, the map
& : Ext?(E, E*(—2m — 1)) — Homg(E, M)y is a surjection, and
the assumptions of Theorem B are satisfied.

Example. Let's construct a 10 x 10 skew-symm matrix of linear
forms in 4 variables with constant rank 8, starting from a
2-instanton on P3.

Remark. there used to be only one example of this type of
spaces, in [Westwick '96].



