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Intro & set up

Ma,b(k): matrices of size a× b over a field k

A vector subspace V ⊆ Ma,b(k) (of dimension n + 1) is a
space of matrices of constant rank

if all its nonzero elements have fixed rank r .

Main questions:

1. Determine `(a, b, r): max dimV , and give relations among
the possible values of the parameters a, b, r , n.

2. Classification for fixed values of a, b, r , n.

3. Construction of examples.



Spaces of matrices  vector bundles

We look at the n + 1-dim’l space V as an a× b matrix whose
entries are linear forms (a linear matrix), and interpret the cokernel
as a vector space varying smoothly over Pn, i.e. a vector bundle!

We get an exact sequence:

0 // K // OPn(−m − 1)b
V //

(( ((

OPn(−m)a // E // 0

E
* 


77

with K , E , and E v.b. on Pn of rank b − r , r , and a− r resp.

Remark. The idea of using v.b. to study and construct linear
matrices of constant rank dates back to [Sylvester ’86].



Some results

• [Westwick ’87] b − r + 1 ≤ `(a, b, r) ≤ a + b − 2r + 1
for 2 ≤ r ≤ a ≤ b (not sharp)

• [Ellia-Menegatti ’15] effective value of `(a, r) for a ≤ 10

• [Ilic-Landsberg ’99] `sym(r + 2, r) = 3

• [Manivel-Mezzetti ’05] classification of spaces of skew-symm
matrices of size 6 and constant rank 4, `skew (6, 4) = 3

• [Fania-Mezzetti ’11] classification of spaces of skew-symm
matrices of size 8 and constant rank 6, `skew (8, 6) = 3

• [B.-Mezzetti ’15] classification of m-effective pairs (c1, c2)
+ explicit construction for all pairs

(m-effective: there exists a 3-dim’l space of skew-symm matrices of
size 2c1 + 2, constant rank 2c1, whose cokernel E has ci (E ) = ci )



Looking for explicit examples

Possible approaches:

? “ad hoc” construction, e.g. [Westwick ’90], or

? projection from bigger size matrices.

Why projecting? The smaller n − r is, the easier it becomes to find
indecomposable rank r bundles on Pn,

so a good strategy consists in first building a bigger matrix, and
then projecting it to a smaller one of the same constant rank.

Cutting down columns (rows) ↔ taking a quotient of K (resp. E )

Example. All m-effective bundles appearing in [B.-Mezzetti ’15] are
quotients of bundles of the form:

(⊕i≥1OP2(i)ai )⊕ Qb with i ≥ 1, ai , b ≥ 0 for all i .



Small corank

The projection technique was also used in [Fania-Mezzetti ’11], but
it does not work for “small corank”:

Proposition. Let V be a linear space of a× b matrices of constant
rank r , and dim = n + 1. V induces by projection a space V ′ of
α× β matrices of the same constant rank r and dimension n + 1
for any α ≥ r + n and β ≥ r + n.

Corollary. n + 1-dim’l spaces of matrices of constant rank cannot
be constructed via projection as soon as n > min{α− r , β − r}.

We say that an n + 1-dim’l space of a× b matrices of constant
rank r has small corank if n > min{a− r , b − r}.



Vector bundles  spaces of matrices?

[B.-Faenzi-Mezzetti ’13]: method to prove existence of families of
4-dim’l spaces of skew-symmetric matrices of constant corank 2
(so small corank!)

Restart from the exact sequence:

0 // K // OPn(−m − 1)b // OPn(−m)a // E // 0



Vector bundles  spaces of matrices?

[B.-Faenzi-Mezzetti ’13]: method to prove existence of families of
4-dim’l spaces of skew-symmetric matrices of constant corank 2
(so small corank!)

Restart from the exact sequence in the skew-simm. case:

0 // E ∗(−2m − 1) // OP3(−m − 1)r+2 // OP3(−m)r+2 // E // 0

We get a distinguished element

η ∈ Ext2(E ,E ∗(−2m − 1)) ' HomDb(P3)(E ,E
∗(−2m − 1)[2]).

For all t ∈ Z, the cup product with η induces maps:

µt : H0(E (t)) −→ H2(E ∗(−2m − 1 + t)).

Our distinguished elt. gives non-degeneracy conditions on the µt ’s.



Vector bundles  spaces of matrices?

Idea: take Cone(η), the cone of the morphism η, and decompose
it with respect to the standard exceptional collection
〈OP3(−m − 2),OP3(−m − 1),OP3(−m),OP3(−m + 1)〉.

Theorem I. (B.-Faenzi-Mezzetti)

E : rank 2 vector bundle on P3 “with the right invariants”.

The existence of a distinguished elt. η ∈ Ext2(E ,E ∗(−2m− 1))
inducing the non-degeneracy conditions on the maps µt ’s

is equivalent to

the existence of a linear matrix V , having size r + 2, constant
rank r , and a twist of E as its cokernel.

Such matrix appears as differential in the decomposition of
Cone(η), and moreover it is necessarily skew-symmetrizable.



Instanton bundles & spaces of matrices

The non-degeneracy conditions in Theorem I are hard to check!

It can be done in the following cases:

Theorem II. (B.-Faenzi-Mezzetti)

• Any 2-instanton on P3 induces a skew-symmetric matrix of
linear forms in 4 variables having size 10 and constant rank 8.

• General 4-instantons on P3 induce a skew-symmetric matrix of
linear forms in 4 variables having size 14 and constant rank 12.

Problem: these results are non-constructive!



Looking for a constructive algorithm

Remember: we want a construction vector bundle  linear matrix.

So let E : v.b. on Pn = Proj(R), R = k[x0, . . . , xn].

First idea: look at its minimal free resolution. Even better, resolve
its module of sections: E = H0

∗(E ) =
⊕

t∈Z H0(E (t)).

It is a graded R-module with graded Betti numbers βi ,j and
minimal free resolution:

· · · −→
⊕
j1

R(−j1)β1,j1 −→
⊕
j0

R(−j0)β0,j0 −→ E

This is of course too näıve. The resolution is not linear in general!



Linear presentation, m-linearity

A graded R-module E has m-linear resolution over R if its minimal
graded free resolution, for suitable integers βi ,m+i , is of type:

· · · −→ R(−m − 2)β2,m+2 −→ R(−m − 1)β1,m+1 −→ R(−m)β0,m −→ E

That is, E has a m-linear resolution if:

1. Er = 0 for r < m,

2. E is generated by Em, and

3. E has a resolution where all the maps are represented by
matrices of linear forms.

E is m-linearly presented up to order k , or just linearly presented
when k = 1, if only the first k maps are matrices of linear forms.



Truncated modules and regularity

We can get around the non-linearity of the resolution of E by

truncating the graded module “in the right spot”,

namely its regularity reg(E).
(Can be computed as max{j − i | βi ,j 6= 0}.)

Indeed, if E =
⊕

t∈Z Et , then E≥m =
⊕

t≥m Et and E≥reg(E)
always has m-linear resolution.

So we got linearity, but we still need something a bit more
sophisticated! To begin with, we lost control over the size of the
matrix (in general it will be too big!)

(Vague) idea: “cut off a piece” of the linear matrix from the
linear resolution of E≥reg(E), without modifying the rank.



Cutting off pieces of a linear resolution

Construction from [B.-Faenzi-Lella ’16]: let E and G be f.g.
graded R-modules with minimal graded free resolutions:

· · · // E 1 e1 // E 0 e0 // E

· · · // G 1
g1
// G 0

g0
// G



Cutting off pieces of a linear resolution

Construction from [B.-Faenzi-Lella ’16]: let E and G be f.g.
graded R-modules with minimal graded free resolutions:

µ : E→ G morphism induces
maps µi : E i → G i , det. up
to chain homotopy.

(E and G lin presented up to
order j ⇒ the µi ’s are
uniquely det. for i ≤ j − 1.)

· · · // E 1

µ1

��

e1 // E 0

µ0

��

e0 // E

µ

��
· · · // G 1

g1
// G 0

g0
// G



Cutting off pieces of a linear resolution

Construction from [B.-Faenzi-Lella ’16]: let E and G be f.g.
graded R-modules with minimal graded free resolutions:

µ : E→ G morphism induces
maps µi : E i → G i , det. up
to chain homotopy.

(E and G lin presented up to
order j ⇒ the µi ’s are
uniquely det. for i ≤ j − 1.)

· · · // ? // ? // F_�

��
· · · // E 1

µ1

��

e1 // E 0

µ0

��

e0 // E

µ

��
· · · // G 1

g1
// G 0

g0
// G

What can we say about the resolution of the kernel F?



Cutting off pieces of a linear resolution

Theorem A. (B.-Faenzi-Lella)

E and G: m-lin presented R-modules, resp. up to order 1 and 2

µ : E� G a surjective morphism, and µi ’s the induced maps

Then F = ker(µ) is generated in deg m and m + 1, and moreover:

1. if µ1 is surjective, F is generated in deg m and has linear and
quadratic syzygies, and β0,m(F) = β0,m(E)− β0,m(G);

2. if moreover µ2 is surjective, F is linearly presented and
β1,m+1(F) = β1,m+1(E)− β1,m+1(G).



Cutting off pieces of a linear resolution

Theorem A. (B.-Faenzi-Lella)

E and G: m-lin presented R-modules, resp. up to order 1 and 2

µ : E� G a surjective morphism, and µi ’s the induced maps

Then F = ker(µ) is generated in deg m and m + 1, and moreover:

1. if µ1 is surjective, F is generated in deg m and has linear and
quadratic syzygies, and β0,m(F) = β0,m(E)− β0,m(G);

2.

· · · // R(−m − 1)α1−γ1

��

// R(−m)α0−γ0 //

��

F_�

��
· · · // R(−m − 2)α2

µ2����

// R(−m − 1)α1

µ1����

// R(−m)α0

µ0����

// E

µ
����

· · · // R(−m − 2)γ2 // R(−m − 1)γ1 // R(−m)γ0 // G



Looking for constant rank matrices

Our goal is to construct constant rank matrices from v.b.

What happens if the sheaves E = Ẽ and G = G̃ are v.b.?

Theorem B. (B.-Faenzi-Lella)

In the assumptions of Theorem A part 1, suppose also that:

(i) E = Ẽ and G = G̃ are v.b. on Pn of rank r and s respectively;

(ii) some extra “technical condition” holds.

Set a = β0,m(E)− β0,m(G) and b = β1,m+1(E)− β1,m+1(G).

Then the presentation matrix V of F = ker(µ) has a linear part of
size a× b and constant corank r − s.

Moreover F = F̃ is isomorphic to the kernel of µ̃ : E → G .

Remark. µ2 surjective ⇒: technical condition



(A lot of) explicit examples!

In the applications we consider the case when G = 0, i.e. G
Artinian module, so in particular F = F̃ ' Ẽ = E .

What do we get?

A veritable factory of examples of constant rank matrices!

Why is it good?

? can implement the method on a computer
(Macaulay2 packages available online)

? explicit examples in several cases

Why is it better than previously existing methods?

? can avoid cumbersome computations

? the method goes beyond projection method and works for
small corank!



It all comes together

Let’s go back to:

0 // K (t) // OPn(−m − 1 + t)b // OPn(−m + t)a // E (t) // 0.

We saw that an exact sequence of this type corresponds to an
element η ∈ Ext2(E ,K ), which via cup product induces maps

µt : H0(E (t)) −→ H2(K (t)).

 cup product with η gives: µ = ⊕tµt : H0
∗(E )→ H2

∗(K ).

This is a morphism, homogeneous of degree 0.

For n ≥ 3 both cohomology groups H1(OPn(−m + t)) and
H2(OPn(−m − 1 + t)) vanish for all t, so µ is surjective.

So we are in a good position to apply Theorem B!



It all comes together

Set E = H0
∗(E ) and M = H2

∗(K ),

and define Φ as the linear map induced by the µt ’s:

Φ : Ext2(E ,K ) −→ HomR(E,M)0

Theorem I, revisited.

Let n ≥ 3 and V : R(−m − 1)b → R(−m)a skew-symmetrizable of
constant rank. Set K = kerV and E = CokerV .

Then K ' E ∗(−2m − 1), and ∃ η ∈ H2(S2E ∗(−2m − 1)) under
the canonical decomposition

Ext2(E ,E ∗(−2m−1)) ' H2(S2E ∗(−2m−1))⊕H2(∧2E ∗(−2m−1))

such that V presents ker Φ(η).

Conversely, if η ∈ H2(S2E ∗(−2m − 1)), µ = Φ(η) satisfies
Theorem B, and kerV ' E ∗(−2m − 1), V is skew-symmetrizable.



One explicit example

Theorem II, revisited.

When E is a 2-instanton bundle or a generic 4-instanton, the map
Φ : Ext2(E ,E ∗(−2m − 1)) −→ HomR(E,M)0 is a surjection, and
the assumptions of Theorem B are satisfied.

Example. Let’s construct a 10× 10 skew-symm matrix of linear
forms in 4 variables with constant rank 8, starting from a
2-instanton on P3.

Remark. there used to be only one example of this type of
spaces, in [Westwick ’96].


