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Introduction



Le Y be a compact Kéhler manifold of dimension n. Then Y is called
Calabi—Yau variety if

[ | KYIO;
m O(Y)=0Vi=1,...,n—1

Let X be a compact smooth Kahler manifold. Then X is called IHS
manifold if

B (X) =0;
m H?9(X) = Cwx, where wy is a symplectic form.

X ~ S is said of K3%l-type.



Let S be a K3 surface;

B o € Aut(S) symplectic = a minimal resolution of S/c is a K3
surface.

B o € Aut(S) non-symplectic = S/o is Enriques or has k = —cc.

What about higher dimensions?
m Fujiki: X IHS, o € Aut(X) symplectic = in general, no resolution
of X/o is IHS
m Boissiére-Nieper-Sarti and Oguiso-Schroer: o non-symplectic
fixed-point free = X /o generalized Enriques variety

Question

What about other quotients X/o with X IHS and o € Aut(X)
non-symplectic?



Our question |l

Our question

When do we obtain Calabi—Yau manifolds as resolutions of quotients
of IHS manifolds?

O’Grady’s example:

A general (2)-polarized 4-fold X of K3[@-type is a smooth double
cover of an EPW sextic Y4 C P°, which is singular along a surface ©
Blowing-up X one gets a smooth Calabi—Yau 4-fold Y.

Main features of the example:

the covering involution ¢ € Aut(X) is non-symplectic;
the fixed locus X" is a Lagrangian surface ¥’, whose image is X;

¥ are all A singularities and can be resolved via a crepant
resolution.

A more precise question

When does the quotient X/o admit a crepant resolution which is a
Calabi—-Yau?



General results



Take: m X an IHS of dimension 2n;
® o € Aut(X) non-symplectic of order p with X? # (;
m A the matrix which linearizes o near a component of X ;
m (5',...¢5), with 0 < a; < p, the eigenvalues of A.

Assume axj_1 + asj =1 mod p foreveryi=1,... n. Then:
o preserves the volume form if and only if p|n.

The singularities of X /o are canonical if and only if p = n and all
the components of X° have dimension p = n.

Corollary

If X is a 2p-dimensional IHS variety and o € Aut(X) is non-symplectic
of order p such that all the components of X° have dimension p, then
there exists a crepant resolution Y of X/o which is a Calabi—Yau
2p-fold.



Idea of the proof

Take Q € H?™0(X) a volume form. Then 3k € C* such that
QIIka’(IdX1 AdXxo A ... A dXop

o non-symplectic = o*Q = (JQ.
Hence: 0*Q = Q < p|n.
Take C C X? component of codimension > 1 and 7 : X — X/o.
Then Sing(X /o) D =(C).
Singularities in 7(C) are canonical < (Z/?; a)/p=1.
m (X7 a)/p=1=n=pandg=0Vj=1,...,p
=A=(1,...,1,¢{,...,() = codim X = p.
m codim X7 = p = (32, &)/p = 1is easy.
Canonical singularities = 33" : Y — X/o crepant resolution.
Moreover, h'"%(Y) =0V0 < i< 2p. O



The crepant resolution

The following diagram commutes
6 ~

[

Xjo<"X/G=Y

with:
m  the blow-up of X along X¢;
m 5 € Aut(X) induced by o;
m 7 and 7’ are the quotient maps;

m ' is the blow-up of X/c in its singular locus.



The case p=2

Assume p = 2: we consider non-symplectic involutions on a 4-fold X.

m Nikulin: non-symplectic involutions on K3 surfaces;
m Beauville: topological classification in the K3[@-type case;

m Boissiére, C., Sarti: finer lattice-theoretical classification in the
K3Pl-type case;

m Mongardi, Tari, Wandel: classification in the generalized Kummer
4-folds case.

Beauville: a non-symplectic involution « on an IHS 4-fold fixes
Lagrangian surfaces.

Notation: m X an IHS 4-fold;
m ; a non-symplectic involution.



Hodge numbers

Suppose X* =[] B;. Denote:

._ RO AT
m b:=h £H13/)= Bt = dim H2(X,C)" = dim H"1(X)";
mci=3 (h0(B)):; m b = dim K21 (X)" = dim H3(X, C)";
md:=Y7 (PYB)); m f3q = dim H31(X)
i 2,2 L
me— 2;7:1(h1,1(5j)); mbhy:= dim H==(X)*.

Remark: dim H*(X,C)* =2+ 2t 1 + b 5.

Proposition

The Hodge diamond of Y is given by

hO’O(Y) = h*0 — 1’ h170(Y) — K20 = K30 — 0’
WY (Y)=ti+b, HN(Y)=t1+c,
h2’2(Y) =bo+e, h3’1(Y) =11+ d.



Proof and consequences

Idea of the proof: H**(Y) = H**(X)". N
Take E the exceptional divisor of the blow up § = E c X"
Hence dim (Hp’q()N()T) = dim (HP9(X)") + hP~19-1(E). O

Corollary

Take X a 4-fold of K3P-type and . € Aut(X) a non-symplectic
involution.

Then any crepant resolution of X /. is a Calabi—Yau variety with
Hodge numbers:

K00 — h40_1 K10 = K20 — h30_0
= (112 198 1 +2c—2d + £2,)/2, W' =,
2 = 352—!—21‘12,1 — 421 1 + 2c, B =21— ti1+d.



Comparison with the Borcea-Voisin construction



Natural involutions

Take S a K3 surface and s a non-symplectic involution.

Nikulin: §*s consists of N disjoint curves D;.
Set N' = YN, g(D).
In most cases: S's = CU[[}";' R; with C of genus g > 0 and R all
rational curves.
(S121)s’ consists of the following surfaces:
m CH,;
m N — 1 surfaces isomorphic to C x R; ~ C x P';
m N — 1 surfaces isomorphic to (P')1!;
m (N —2)(N — 1)/2 surfaces isomorphic to P! x P';
| S/Ls.



The Borcea-Voisin 4-fold

Cynk—Hulek: Take Bj, B, two Calabi—Yau’s of dimension ny and no.
Take ¢; € Aut(B;) = 11 X 1o € Aut(By x By).

Suppose: m ; does not preserve the period of B;;

m all the components of (B; x By)(*1**2) have codimension
2.

Then there exists a crepant resolution of (By x By)/(¢1 x t2) which is
a Calabi—Yau of dimension (ny 4+ ny), called of Borcea—Voisin type.

Here: choose B; = B, = S and +y = 1 = 15 = any crepant resolution
B:Z — 82/.2 is a smooth Calabi—Yau 4-fold.

Hodge numbers of Y Hodge numbers of Z

h'! = (24 4+ 3N — 2N’ + N2)/2, At =20 4+ 2N — 2N’ + N2,
21 = NN/, h?! = 2NN/,
1 = (20 — 2N + N’ + N'?) /2, R =20 — 2N + 2N’ + N2,

22 =2(66+-N—N"+N2—NN'+N"2). h?2 = 204 + 4N? — ANN' + 4N"2.



Comparison

/ s | S
Zs = 7= (S x 8)/(1s X 1) (S x 3)/73[21
Zs)oz— — — — = (Sx 8)/{o,1s x 15) <- - - SR/ E < _ _ v

The quotient 4-fold Zs /o is birational to Y.
Z° = ¥ 1 U X, disjoint surfaces.

3 Z/;//U a crepant resolution which is a smooth Calabi—Yau
birational to Ys.



Remarks

m Deformations of (S, :s): dim H'(S)'s =10 — N+ N/;

m deformations of Zs: h®1(Zs) = 20 — 2N + 2N’ + N’?;

m deformations of (S, /2)): dim H1(SE)* = 11 — N + N/;

m deformations of Ys: h*'(Ys) = (20 — 2N + N’ + N2)/2.
Case N’ = 0: all deformations of Zs come from products of

deformations of (S, ¢s).
Every deformation of Ys is dominated by a deformation of Zs.

Mirror symmetry

If S and S are mirror K3s, then Zs and Zg are mirror Calabi—Yau
4-folds, i.e. h'(Zs) = h3’1(23) and h?2(Zs) = h2’2(Z§).

No mirror symmetry on Ys induced by hyperkahler mirror
symmetry.



Quotients of S x S

Take:
m S general K3 surface s.t. Aut(S) = (s);
B W:=5/s.

Fact (Oguiso): Aut(S x S) = (g x id, o) = Dg.

(Sx8)/(ts xid, o) ~ w®

Sx S
1=/ = /9
‘m/wl N
s@) (Sx 8)/(s0(ts % ts)) (Sx 8)/(1s x ts) Sx W W xS
Yoi=/G7 % k/wl /
s@ /L<2> W= w
\ %
B3:=/Ts

w®)



Double covers |

Suppose S* = C a smooth curve.

Sequence of double covers |

SxSHU(Sx8)/(txi)BWx W2 we

Branch points:

ag: Sing(W®@) = n(Aw) = W;

az: az(a1(C x S))Uaz(aq(S x C)), intersecting in C x C;
aq: Sing((S x S)/(ts x ts)) = C x C.

Sequence of double covers |l

SxSU(Sx8)/(tx) B 5?05 we

Branch points:

Ba: T:=xn(W x CUC x W), singular in 7(C x C), intersecting
Sing(W®) in 7(Ac);

B2: Ay U Az, where Smg(S(z)/L(z)) =AiUAUAswith Ay =2 A, = W,
Az Cc® and NA; = T(Ac));

ar: Sing((S x 8)/(1s x ts)) = C x C.



Double covers I

Sequence of double covers llI
Sx S s % s@/> B W

Branch points:

Ba: T:=xn(W x CUC x W), singular in 7(C x C), intersecting
Sing(W®)) in 7(Ac);
Y2i At U Ag;

7: Sing(S®) = 7(As).



Enriques involutions

Proposition

If L is an Enriques involution on S, then Ys = Zg/o .

They are the blow-up of the non ramified double cover of W) in
its singular locus.

We can reconstruct both these processes on S x S:

take Sx S = BlAsUFLS(S X S),

take LS/QTS, o€ Aut(§?</S) induced by ts x ts and o.

= Sx S/<LS/>\<73, o) is smooth and in fact isomorphic both to Ys and
to ZS/US-



Conclusions



Projective models

m NS(S) = (2), W=P?, g(C) = 10;

m NS(S) = U(2), W = P! x P!, g(C) = 9;

m NS(S) = U, W = TF*, . is induced by the hyperelliptic involution
on each fibre of S — P, elliptic fibration with a section.

Work in progress: take H € NS(S) such that ¢y : S — W C PN,
Then O(H) X O(H) induces divisors Dge), Dz and Dy such that:

] ¢|Ds(2)‘ : 8(2) — W(z),
] ¢|DZ| Z = W x W,
] (lezl 7 — W@,



Conclusions

can one construct different (small) resolutions in other cases?

find explicit geometric constructions in higher dimensions/higher
orders.

Thank you!
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