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Notations

Definition

Le Y be a compact Kähler manifold of dimension n. Then Y is called
Calabi–Yau variety if

KY = 0;
hi,0(Y ) = 0 ∀i = 1, . . . ,n − 1

Definition

Let X be a compact smooth Kähler manifold. Then X is called IHS
manifold if

π1(X ) = 0;
H2,0(X ) = CωX , where ωX is a symplectic form.

X ∼ S[2] is said of K 3[2]-type.



Our question

Classically known:

Let S be a K 3 surface;
σ ∈ Aut(S) symplectic⇒ a minimal resolution of S/σ is a K 3
surface.
σ ∈ Aut(S) non-symplectic⇒ S/σ is Enriques or has κ = −∞.

What about higher dimensions?
Fujiki: X IHS, σ ∈ Aut(X ) symplectic⇒ in general, no resolution
of X/σ is IHS
Boissière-Nieper-Sarti and Oguiso-Schroer: σ non-symplectic
fixed-point free⇒ X/σ generalized Enriques variety

Question

What about other quotients X/σ with X IHS and σ ∈ Aut(X )
non-symplectic?



Our question II

Our question

When do we obtain Calabi–Yau manifolds as resolutions of quotients
of IHS manifolds?

O’Grady’s example:
A general 〈2〉-polarized 4-fold X of K 3[2]-type is a smooth double
cover of an EPW sextic YA ⊂ P5, which is singular along a surface Σ
Blowing-up Σ one gets a smooth Calabi–Yau 4-fold Y .
Main features of the example:

1 the covering involution ι ∈ Aut(X ) is non-symplectic;
2 the fixed locus X ι is a Lagrangian surface Σ′, whose image is Σ;
3 Σ are all A1 singularities and can be resolved via a crepant

resolution.

A more precise question

When does the quotient X/σ admit a crepant resolution which is a
Calabi–Yau?
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Main theorem

Theorem

Take: X an IHS of dimension 2n;
σ ∈ Aut(X ) non-symplectic of order p with Xσ 6= ∅;
A the matrix which linearizes σ near a component of Xσ;
(ζa1

p , . . . ζ
a2n
p ), with 0 ≤ ai < p, the eigenvalues of A.

Assume a2i−1 + a2i ≡ 1 mod p for every i = 1, . . . ,n. Then:
1 σ preserves the volume form if and only if p|n.
2 The singularities of X/σ are canonical if and only if p = n and all

the components of Xσ have dimension p = n.

Corollary

If X is a 2p-dimensional IHS variety and σ ∈ Aut(X ) is non-symplectic
of order p such that all the components of Xσ have dimension p, then
there exists a crepant resolution Y of X/σ which is a Calabi–Yau
2p-fold.



Idea of the proof

1 Take Ω ∈ H2n,0(X ) a volume form. Then ∃k ∈ C∗ such that

Ω := kωn
X = dx1 ∧ dx2 ∧ . . . ∧ dx2n

σ non-symplectic⇒ σ∗Ω = ζn
p Ω.

Hence: σ∗Ω = Ω⇔ p|n.
2 Take C ⊂ Xσ component of codimension > 1 and π : X → X/σ.

Then Sing(X/σ) ⊃ π(C).
Singularities in π(C) are canonical⇔ (

∑2n
j=1 aj )/p = 1.

(
∑2n

j=1 aj)/p = 1 ⇒ n = p and aj = 0 ∀j = 1, . . . , p
⇒ A = (1, . . . , 1, ζp, . . . , ζp) ⇒ codim Xσ = p.
codim Xσ = p ⇒ (

∑2n
j=1 aj)/p = 1 is easy.

Canonical singularities⇒ ∃β′ : Y → X/σ crepant resolution.
Moreover, hi,0(Y ) = 0 ∀0 < i < 2p. �



The crepant resolution

The following diagram commutes

X

π

��

X̃
βoo

π′

��
X/σ X̃/σ̃ = Y

β′
oo

with:
β the blow-up of X along Xσ;

σ̃ ∈ Aut(X̃ ) induced by σ;
π and π′ are the quotient maps;
β′ is the blow-up of X/σ in its singular locus.



The case p = 2

Assume p = 2: we consider non-symplectic involutions on a 4-fold X .

Classification

Nikulin: non-symplectic involutions on K 3 surfaces;
Beauville: topological classification in the K 3[2]-type case;
Boissière, C., Sarti: finer lattice-theoretical classification in the
K 3[2]-type case;
Mongardi, Tari, Wandel: classification in the generalized Kummer
4-folds case.

Beauville: a non-symplectic involution ι on an IHS 4-fold fixes
Lagrangian surfaces.

Notation: X an IHS 4-fold;
ι a non-symplectic involution.



Hodge numbers

Suppose X ι =
∐

Bj . Denote:

b := h0(
∐

Bj );

c :=
∑b

j=1(h1,0(Bj ));

d :=
∑b

j=1(h2,0(Bj ));

e :=
∑b

j=1(h1,1(Bj ));

t1,1 := dim H2(X ,C)ι = dim H1,1(X )ι;
t2,1 := dim H2,1(X )ι = dim H3(X ,C)ι;
t3,1 := dim H3,1(X )ι;
t2,2 := dim H2,2(X )ι.

Remark: dim H4(X ,C)ι = 2 + 2t3,1 + t2,2.

Proposition

The Hodge diamond of Y is given by

h0,0(Y ) = h4,0 = 1, h1,0(Y ) = h2,0 = h3,0 = 0,
h1,1(Y ) = t1,1 + b, h2,1(Y ) = t2,1 + c,
h2,2(Y ) = t2,2 + e, h3,1(Y ) = t3,1 + d .



Proof and consequences

Idea of the proof: H∗,∗(Y ) = H∗,∗(X̃ )ι̃.
Take E the exceptional divisor of the blow up β ⇒ E ⊂ X̃ ι̃.
Hence dim

(
Hp,q(X̃ )ι̃

)
= dim (Hp,q(X )ι) + hp−1,q−1(E). �

Corollary

Take X a 4-fold of K 3[2]-type and ι ∈ Aut(X ) a non-symplectic
involution.
Then any crepant resolution of X/ι is a Calabi–Yau variety with
Hodge numbers:

h0,0 = h4,0 = 1, h1,0 = h2,0 = h3,0 = 0,
h1,1 = (112− 19t1,1 + 2c − 2d + t2

1,1)/2, h2,1 = c,
h2,2 = 352 + 2t2

1,1 − 42t1,1 + 2c, h3,1 = 21− t1,1 + d .
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Natural involutions

K 3 surfaces

Take S a K 3 surface and ιS a non-symplectic involution.

Nikulin: SιS consists of N disjoint curves Dj .
Set N ′ =

∑N
j=1 g(Dj ).

In most cases: SιS = C ∪
∐N−1

j=1 Rj with C of genus g ≥ 0 and Rj all
rational curves.

(S[2])ι
[2]
S consists of the following surfaces:

C[2];
N − 1 surfaces isomorphic to C × Rj ' C × P1;
N − 1 surfaces isomorphic to (P1)[2];
(N − 2)(N − 1)/2 surfaces isomorphic to P1 × P1;
S/ιS.



The Borcea-Voisin 4-fold

Cynk–Hulek: Take B1,B2 two Calabi–Yau’s of dimension n1 and n2.
Take ιi ∈ Aut(Bi )⇒ ι1 × ι2 ∈ Aut(B1 × B2).

Suppose: ιi does not preserve the period of Bi ;
all the components of (B1 × B2)(ι1×ι2) have codimension
2.

Then there exists a crepant resolution of (B1 × B2)/(ι1 × ι2) which is
a Calabi–Yau of dimension (n1 + n2), called of Borcea–Voisin type.

Here: choose B1 = B2 = S and ι1 = ι2 = ιS ⇒ any crepant resolution
β : Z → S2/ι2S is a smooth Calabi–Yau 4-fold.

Hodge numbers of Y

h1,1 = (24 + 3N − 2N ′ + N2)/2,
h2,1 = NN ′,
h3,1 = (20− 2N + N ′ + N ′2)/2,
h2,2 =2(66+N−N ′+N2−NN ′+N ′2).

Hodge numbers of Z

h1,1 = 20 + 2N − 2N ′ + N2,
h2,1 = 2NN ′,
h3,1 = 20− 2N + 2N ′ + N ′2,
h2,2 = 204 + 4N2 − 4NN ′ + 4N ′2.



Comparison

S × S

((
π

uu

��

ZS

&&

βZ // (S × S)/(ιS × ιS)

))

(S × S)/σ

vv

S[2]oo

zz
ZS/σZ // (S × S)/〈σ, ιS × ιS〉 S[2]/ι

[2]
S

oo YSoo

Proposition

1 The quotient 4-fold ZS/σ is birational to YS.
2 Zσ = Σ1 ∪ Σ2 disjoint surfaces.

3 ∃ Z̃S/σ a crepant resolution which is a smooth Calabi–Yau
birational to YS.



Remarks

Complex deformations

Deformations of (S, ιS): dim H1,1(S)ιS = 10− N + N ′;
deformations of ZS: h3,1(ZS) = 20− 2N + 2N ′ + N ′2;

deformations of (S[2], ι[2]): dim H1,1(S[2])ι
[2]

= 11− N + N ′;
deformations of YS: h3,1(YS) = (20− 2N + N ′ + N ′2)/2.

Case N ′ = 0: all deformations of ZS come from products of
deformations of (S, ιS).
Every deformation of YS is dominated by a deformation of ZS.

Mirror symmetry

1 If S and Š are mirror K 3s, then ZS and ZŠ are mirror Calabi–Yau
4-folds, i.e. h1,1(ZS) = h3,1(ZŠ) and h2,2(ZS) = h2,2(ZŠ).

2 No mirror symmetry on YS induced by hyperkähler mirror
symmetry.



Quotients of S × S

Take:
S general K 3 surface s.t. Aut(S) = 〈ιS〉;
W := S/ιS.

Fact (Oguiso): Aut(S × S) = 〈ιS × id, σ〉 ∼= D8.

Remark

(S × S) /〈ιS × id, σ〉 'W (2)

S × S

/g8tt

γ1:=/g2

rr

α1:=/g7

�� /g5 ((

/g3

++
S(2)

γ2:=/g7 ''

(S × S)/(σ ◦ (ιS × ιS))

/g2
��

(S × S)/(ιS × ιS)

β2:=/g2uu α2:=/g3 ''

S ×W

/g7

��

W × S
/g7

zz
S(2)/ι

(2)
S

β3:=/g3
))

W ×W
α3:=/g2

ww
W (2)

Skip next



Double covers I

Suppose Sι = C a smooth curve.

Sequence of double covers I

S × S α1→ (S × S)/(ι× ι) α2→W ×W α3→W (2)

Branch points:
α3: Sing(W (2)) = π(∆W ) ∼= W ;
α2: α2(α1(C × S)) ∪ α2(α1(S × C)), intersecting in C × C;
α1: Sing((S × S)/(ιS × ιS)) = C × C.

Sequence of double covers II

S × S α1→ (S × S)/(ι× ι) β2→ S(2)/ι(2) β3→W (2)

Branch points:
β3: T := π(W × C ∪ C ×W ), singular in π(C × C), intersecting

Sing(W (2)) in π(∆C);
β2: A1 ∪ A3, where Sing(S(2)/ι(2)) = A1 ∪ A2 ∪ A3 with A1 ∼= A2 ∼= W ,

A3 ∼= C(2) and ∩Ai = π(∆C));
α1: Sing((S × S)/(ιS × ιS)) = C × C.



Double covers II

Sequence of double covers III

S × S γ1→ S(2) γ2→ S(2)/ι(2) β3→W (2)

Branch points:
β3: T := π(W × C ∪ C ×W ), singular in π(C × C), intersecting

Sing(W (2)) in π(∆C);
γ2: A1 ∪ A2;
γ1: Sing(S(2)) = π(∆S).



Enriques involutions

Proposition

1 If ιS is an Enriques involution on S, then YS
∼= Z̃S/σZ .

2 They are the blow-up of the non ramified double cover of W (2) in
its singular locus.

We can reconstruct both these processes on S × S:

1 take S̃ × S = Bl∆S∪ΓιS
(S × S);

2 take ˜ιS × ιS, σ̃ ∈ Aut(S̃ × S) induced by ιS × ιS and σ.

⇒ S̃ × S/〈˜ιS × ιS, σ̃〉 is smooth and in fact isomorphic both to YS and
to Z̃S/σS.
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Projective models

Projective models of general (S, ιS)

NS(S) = 〈2〉, W ∼= P2, g(C) = 10;
NS(S) = U(2), W ∼= P1 × P1, g(C) = 9;
NS(S) = U, W ∼= F4, ι is induced by the hyperelliptic involution
on each fibre of S → P1, elliptic fibration with a section.

Work in progress: take H ∈ NS(S) such that φ|H| : S →W ⊂ PN .
Then O(H) �O(H) induces divisors DS(2) , DZ and DY such that:

φ|D
S(2) | : S(2) →W (2);

φ|DZ | : Z →W ×W ;

φ|DZ | : Z →W (2).



Conclusions

Open questions:

1 can one construct different (small) resolutions in other cases?
2 find explicit geometric constructions in higher dimensions/higher

orders.

Thank you!
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