Calabi–Yau quotients of irreducible hyperkähler 4-folds

Chiara Camere

Università degli Studi di Milano

May 24 2016

Joint with A. Garbagnati and G. Mongardi

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1 Introduction

2 General results

3 Comparison with the Borcea-Voisin construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

4 Conclusions

3 Comparison with the Borcea-Voisin construction

4 Conclusions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Definition

Le Y be a compact Kähler manifold of dimension n. Then Y is called Calabi–Yau variety if

•
$$K_Y = 0;$$

• $h^{i,0}(Y) = 0 \ \forall i = 1, ..., n - 1$

Definition

Let X be a compact smooth Kähler manifold. Then X is called IHS manifold if

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $X \sim S^{[2]}$ is said of $K3^{[2]}$ -type.

Our question

Classically known:

Let S be a K3 surface;

- σ ∈ Aut(S) symplectic ⇒ a minimal resolution of S/σ is a K3 surface.
- $\sigma \in \operatorname{Aut}(S)$ non-symplectic $\Rightarrow S/\sigma$ is Enriques or has $\kappa = -\infty$.

What about higher dimensions?

- Fujiki: X IHS, σ ∈ Aut(X) symplectic ⇒ in general, no resolution of X/σ is IHS
- Boissière-Nieper-Sarti and Oguiso-Schroer: σ non-symplectic fixed-point free $\Rightarrow X/\sigma$ generalized Enriques variety

Question

What about other quotients X/σ with X IHS and $\sigma \in Aut(X)$ non-symplectic?

Our question II

Our question

When do we obtain Calabi–Yau manifolds as resolutions of quotients of IHS manifolds?

O'Grady's example:

A general $\langle 2 \rangle$ -polarized 4-fold *X* of $K3^{[2]}$ -type is a smooth double cover of an EPW sextic $Y_A \subset \mathbb{P}^5$, which is singular along a surface Σ Blowing-up Σ one gets a smooth Calabi–Yau 4-fold *Y*. Main features of the example:

- 1 the covering involution $\iota \in Aut(X)$ is non-symplectic;
- **2** the fixed locus X^{ι} is a Lagrangian surface Σ' , whose image is Σ ;
- 3 Σ are all A_1 singularities and can be resolved via a crepant resolution.

A more precise question

When does the quotient X/σ admit a crepant resolution which is a Calabi–Yau?

(日)

2 General results

3 Comparison with the Borcea-Voisin construction

4 Conclusions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Main theorem

Theorem

Take: X an IHS of dimension 2n;

- $\sigma \in Aut(X)$ non-symplectic of order p with $X^{\sigma} \neq \emptyset$;
- A the matrix which linearizes σ near a component of X^{σ} ;
- $(\zeta_p^{a_1}, \dots, \zeta_p^{a_{2n}})$, with $0 \le a_i < p$, the eigenvalues of A.

Assume $a_{2i-1} + a_{2i} \equiv 1 \mod p$ for every $i = 1, \ldots, n$. Then:

- **1** σ preserves the volume form if and only if p|n.
- 2 The singularities of X/σ are canonical if and only if p = n and all the components of X^{σ} have dimension p = n.

Corollary

If X is a 2p-dimensional IHS variety and $\sigma \in Aut(X)$ is non-symplectic of order p such that all the components of X^{σ} have dimension p, then there exists a crepant resolution Y of X/σ which is a Calabi–Yau 2p-fold.

Idea of the proof

1 Take $\Omega \in H^{2n,0}(X)$ a volume form. Then $\exists k \in \mathbb{C}^*$ such that

$$\Omega := k\omega_X^n = dx_1 \wedge dx_2 \wedge \ldots \wedge dx_{2n}$$

 σ non-symplectic $\Rightarrow \sigma^* \Omega = \zeta_p^n \Omega$. Hence: $\sigma^* \Omega = \Omega \Leftrightarrow p | n$.

2 Take $C \subset X^{\sigma}$ component of codimension > 1 and $\pi : X \to X/\sigma$. Then $\operatorname{Sing}(X/\sigma) \supset \pi(C)$. Singularities in $\pi(C)$ are canonical $\Leftrightarrow (\sum_{j=1}^{2n} a_j)/p = 1$.

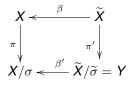
•
$$(\sum_{j=1}^{2n} a_j)/p = 1 \Rightarrow n = p \text{ and } a_j = 0 \forall j = 1, \dots, p$$

 $\Rightarrow A = (1, \dots, 1, \zeta_p, \dots, \zeta_p) \Rightarrow \operatorname{codim} X^{\sigma} = p.$
• $\operatorname{codim} X^{\sigma} = p \Rightarrow (\sum_{j=1}^{2n} a_j)/p = 1 \text{ is easy.}$

Canonical singularities $\Rightarrow \exists \beta' : Y \to X/\sigma$ crepant resolution. Moreover, $h^{i,0}(Y) = 0 \forall 0 < i < 2p$.

・ロト・西ト・西ト・日下・ 日下

The following diagram commutes



(日) (日) (日) (日) (日) (日) (日)

with:

- β the blow-up of X along X^{σ} ;
- $\widetilde{\sigma} \in \operatorname{Aut}(\widetilde{X})$ induced by σ ;
- π and π' are the quotient maps;
- β' is the blow-up of X/σ in its singular locus.

Assume p = 2: we consider non-symplectic involutions on a 4-fold X.

Classification

- Nikulin: non-symplectic involutions on K3 surfaces;
- Beauville: topological classification in the K3^[2]-type case;
- Boissière, C., Sarti: finer lattice-theoretical classification in the K3^[2]-type case;
- Mongardi, Tari, Wandel: classification in the generalized Kummer 4-folds case.

Beauville: a non-symplectic involution ι on an IHS 4-fold fixes Lagrangian surfaces.

- **Notation: X** an IHS 4-fold;
 - \bullet *i* a non-symplectic involution.

Hodge numbers

Suppose $X^{\iota} = \coprod B_i$. Denote:

- $b := h^0(\coprod B_j);$
- $c := \sum_{j=1}^{b} (h^{1,0}(B_j));$
- $d := \sum_{j=1}^{b} (h^{2,0}(B_j));$
- $e := \sum_{j=1}^{b} (h^{1,1}(B_j));$

$$t_{1,1} := \dim H^2(X, \mathbb{C})^{\iota} = \dim H^{1,1}(X)^{\iota}; t_{2,1} := \dim H^{2,1}(X)^{\iota} = \dim H^3(X, \mathbb{C})^{\iota}; t_{3,1} := \dim H^{3,1}(X)^{\iota}; t_{2,2} := \dim H^{2,2}(X)^{\iota}$$

Remark: dim
$$H^4(X, \mathbb{C})^{\iota} = 2 + 2t_{3,1} + t_{2,2}$$
.

Proposition

The Hodge diamond of Y is given by

$$\begin{aligned} h^{0,0}(Y) &= h^{4,0} = 1, \quad h^{1,0}(Y) = h^{2,0} = h^{3,0} = 0, \\ h^{1,1}(Y) &= t_{1,1} + b, \quad h^{2,1}(Y) = t_{2,1} + c, \\ h^{2,2}(Y) &= t_{2,2} + e, \quad h^{3,1}(Y) = t_{3,1} + d. \end{aligned}$$

Idea of the proof: $H^{*,*}(Y) = H^{*,*}(\widetilde{X})^{\widetilde{\iota}}$.

Take *E* the exceptional divisor of the blow up $\beta \Rightarrow E \subset \widetilde{X}^{\widetilde{\iota}}$.

Hence dim
$$\left(H^{p,q}(\widetilde{X})^{\widetilde{\iota}}
ight)=$$
 dim $(H^{p,q}(X)^{\iota})+h^{p-1,q-1}(E).$

Corollary

Take X a 4-fold of $K3^{[2]}$ -type and $\iota \in Aut(X)$ a non-symplectic involution.

Then any crepant resolution of X/ι is a Calabi–Yau variety with Hodge numbers:

$$\begin{split} h^{0,0} &= h^{4,0} = 1, & h^{1,0} = h^{2,0} = h^{3,0} = 0, \\ h^{1,1} &= (112 - 19t_{1,1} + 2c - 2d + t_{1,1}^2)/2, & h^{2,1} = c, \\ h^{2,2} &= 352 + 2t_{1,1}^2 - 42t_{1,1} + 2c, & h^{3,1} = 21 - t_{1,1} + d. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3 Comparison with the Borcea-Voisin construction

4 Conclusions

K3 surfaces

Take *S* a *K*3 surface and ι_S a non-symplectic involution.

Nikulin: S^{ι_S} consists of N disjoint curves D_j . Set $N' = \sum_{j=1}^{N} g(D_j)$.

In most cases: $S^{\iota_S} = C \cup \prod_{j=1}^{N-1} R_j$ with C of genus $g \ge 0$ and R_j all rational curves.

 $(S^{[2]})^{\iota_s^{[2]}}$ consists of the following surfaces: $C^{[2]};$

- *N* − 1 surfaces isomorphic to $C \times R_j \simeq C \times \mathbb{P}^1$;
- N-1 surfaces isomorphic to $(\mathbb{P}^1)^{[2]}$;
- (N-2)(N-1)/2 surfaces isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$;
- *S*/*ι*_S.

The Borcea-Voisin 4-fold

Cynk–Hulek: Take B_1 , B_2 two Calabi–Yau's of dimension n_1 and n_2 . Take $\iota_i \in \operatorname{Aut}(B_i) \Rightarrow \iota_1 \times \iota_2 \in \operatorname{Aut}(B_1 \times B_2)$.

Suppose: • ι_i does not preserve the period of B_i ;

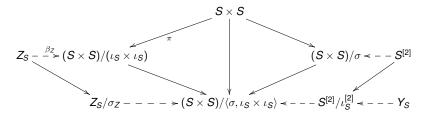
all the components of $(B_1 \times B_2)^{(\iota_1 \times \iota_2)}$ have codimension 2.

Then there exists a crepant resolution of $(B_1 \times B_2)/(\iota_1 \times \iota_2)$ which is a Calabi–Yau of dimension $(n_1 + n_2)$, called *of Borcea–Voisin type*.

Here: choose $B_1 = B_2 = S$ and $\iota_1 = \iota_2 = \iota_S \Rightarrow$ any crepant resolution $\beta : Z \to S^2/\iota_S^2$ is a smooth Calabi–Yau 4-fold.

Hodge numbers of Y	Hodge numbers of Z
$ \begin{split} h^{1,1} &= (24+3N-2N'+N^2)/2, \\ h^{2,1} &= NN', \\ h^{3,1} &= (20-2N+N'+N'^2)/2, \\ h^{2,2} &= 2(66+N-N'+N^2-NN'+N'^2). \end{split} $	$ \begin{split} h^{1,1} &= 20 + 2N - 2N' + N^2, \\ h^{2,1} &= 2NN', \\ h^{3,1} &= 20 - 2N + 2N' + N'^2, \\ h^{2,2} &= 204 + 4N^2 - 4NN' + 4N'^2. \end{split} $

Comparison



Proposition

- **1** The quotient 4-fold Z_S/σ is birational to Y_S .
- **2** $Z^{\sigma} = \Sigma_1 \cup \Sigma_2$ disjoint surfaces.
- **3** $\exists Z_S / \sigma$ a crepant resolution which is a smooth Calabi–Yau birational to Y_S .

(日)

Remarks

Complex deformations

- Deformations of (S, ι_S) : dim $H^{1,1}(S)^{\iota_S} = 10 N + N'$;
- deformations of Z_S : $h^{3,1}(Z_S) = 20 2N + 2N' + N'^2$;
- deformations of $(S^{[2]}, \iota^{[2]})$: dim $H^{1,1}(S^{[2]})^{\iota^{[2]}} = 11 N + N';$
- deformations of Y_S : $h^{3,1}(Y_S) = (20 2N + N' + N'^2)/2$.

Case N' = 0: all deformations of Z_S come from products of deformations of (S, ι_S) . Every deformation of Y_S is dominated by a deformation of Z_S .

Mirror symmetry

- 1 If *S* and \check{S} are mirror *K*3s, then Z_S and $Z_{\check{S}}$ are mirror Calabi–Yau 4-folds, i.e. $h^{1,1}(Z_S) = h^{3,1}(Z_{\check{S}})$ and $h^{2,2}(Z_S) = h^{2,2}(Z_{\check{S}})$.
- No mirror symmetry on Y_S induced by hyperkähler mirror symmetry.

Quotients of $S \times S$

Take:

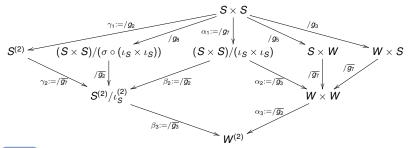
• S general K3 surface s.t. $Aut(S) = \langle \iota_S \rangle$;

$$\bullet W := S/\iota_S.$$

Fact (Oguiso): Aut($S \times S$) = $\langle \iota_S \times id, \sigma \rangle \cong \mathcal{D}_8$.

Remark

 $(S \times S) / \langle \iota_S \times \mathrm{id}, \sigma \rangle \simeq W^{(2)}$



Double covers I

Suppose $S^{\iota} = C$ a smooth curve.

Sequence of double covers I

 $S imes S \stackrel{lpha_1}{
ightarrow} (S imes S) / (\iota imes \iota) \stackrel{lpha_2}{
ightarrow} W imes W \stackrel{lpha_3}{
ightarrow} W^{(2)}$

Branch points:

$$\begin{array}{l} \alpha_3 \colon \operatorname{Sing}(W^{(2)}) = \pi(\Delta_W) \cong W; \\ \alpha_2 \colon \alpha_2(\alpha_1(\mathcal{C} \times \mathcal{S})) \cup \alpha_2(\alpha_1(\mathcal{S} \times \mathcal{C})), \text{ intersecting in } \mathcal{C} \times \\ \alpha_1 \colon \operatorname{Sing}((\mathcal{S} \times \mathcal{S})/(\iota_{\mathcal{S}} \times \iota_{\mathcal{S}})) = \mathcal{C} \times \mathcal{C}. \end{array}$$

Sequence of double covers II

 $S imes S \stackrel{lpha_1}{
ightarrow} (S imes S) / (\iota imes \iota) \stackrel{eta_2}{
ightarrow} S^{(2)} / \iota^{(2)} \stackrel{eta_3}{
ightarrow} W^{(2)}$

Branch points:

- β_3 : $T := \pi(W \times C \cup C \times W)$, singular in $\pi(C \times C)$, intersecting $Sing(W^{(2)})$ in $\pi(\Delta_C)$;
- β_2 : $A_1 \cup A_3$, where $\operatorname{Sing}(S^{(2)}/\iota^{(2)}) = A_1 \cup A_2 \cup A_3$ with $A_1 \cong A_2 \cong W$, $A_3 \cong C^{(2)}$ and $\cap A_i = \pi(\Delta_C)$;

C:

 α_1 : Sing(($S \times S$)/($\iota_S \times \iota_S$)) = $C \times C$.

Sequence of double covers III

 $S imes S \xrightarrow{\gamma_1} S^{(2)} \xrightarrow{\gamma_2} S^{(2)} / \iota^{(2)} \xrightarrow{\beta_3} W^{(2)}$

Branch points:

 β_3 : $T := \pi(W \times C \cup C \times W)$, singular in $\pi(C \times C)$, intersecting $Sing(W^{(2)})$ in $\pi(\Delta_C)$;

(日)

 $\gamma_2: A_1 \cup A_2;$ $\gamma_1: \operatorname{Sing}(S^{(2)}) = \pi(\Delta_S).$

Proposition

- **1** If ι_S is an Enriques involution on *S*, then $Y_S \cong Z_S / \sigma_Z$.
- They are the blow-up of the non ramified double cover of W⁽²⁾ in its singular locus.

We can reconstruct both these processes on $S \times S$:

1 take
$$S \times S = \operatorname{Bl}_{\Delta_S \cup \Gamma_{\iota_S}}(S \times S);$$

2 take $\iota_{S} \times \iota_{S}$, $\tilde{\sigma} \in \operatorname{Aut}(S \times S)$ induced by $\iota_{S} \times \iota_{S}$ and σ .

 $\Rightarrow \widetilde{S \times S} / \langle \widetilde{\iota_S \times \iota_S}, \widetilde{\sigma} \rangle \text{ is smooth and in fact isomorphic both to } Y_S \text{ and to } \widetilde{Z_S / \sigma_S}.$

2 General results

3 Comparison with the Borcea-Voisin construction

4 Conclusions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Projective models of general (S, ι_S)

• NS(S) =
$$\langle 2 \rangle$$
, $W \cong \mathbb{P}^2$, $g(C) = 10$;

NS(S) = U(2),
$$W \cong \mathbb{P}^1 \times \mathbb{P}^1$$
, $g(C) = 9$;

NS(S) = U, W ≅ ℝ⁴, ι is induced by the hyperelliptic involution on each fibre of S → ℙ¹, elliptic fibration with a section.

(日) (日) (日) (日) (日) (日) (日)

Work in progress: take $H \in NS(S)$ such that $\phi_{|H|} : S \to W \subset \mathbb{P}^N$. Then $\mathcal{O}(H) \boxtimes \mathcal{O}(H)$ induces divisors $D_{S^{(2)}}$, D_Z and D_Y such that:

$$\begin{array}{l} \bullet \ \phi_{|D_{S^{(2)}}|} : S^{(2)} \to W^{(2)}; \\ \bullet \ \phi_{|D_{Z}|} : Z \to W \times W; \\ \bullet \ \phi_{|D_{Z}|} : Z \to W^{(2)}. \end{array}$$

Open questions:

- 1 can one construct different (small) resolutions in other cases?
- find explicit geometric constructions in higher dimensions/higher orders.

Thank you!

(日)