On Gushel-Mukai Varieties

Olivier DEBARRE (joint with Alexander KUZNETSOV)

École normale supérieure

Carry-le-Rouet, mai 2016

Definition of GM varieties

A Gushel–Mukai variety of dimension n is

• (ordinary type) a transverse intersection

$$X := G(2, V_5) \cap \mathbf{P}(W_{n+5}) \cap Q \subset \mathbf{P}(\bigwedge^2 V_5)$$

• (special type) a double cover

 $X \longrightarrow M := G(2, V_5) \cap \mathbf{P}(W_{n+4}) \subset \mathbf{P}(\bigwedge^2 V_5)$

branched along $M \cap Q$.

Characterization of GM varieties

One has $K_X \equiv (2 - n)H$ and $H^n = 10$. GM manifolds are:

- (n = 1) genus-6 curves with Clifford index 2 (not hyperelliptic, not trigonal, not a plane quintic), special ⇔ bielliptic;
- (n = 2) degree-10 K3 surfaces whose polarization contains a genus-6 curve with Clifford index 2, special ⇔ hyperelliptic;
- (n = 3, 4, 5, 6) prime Fano *n*-folds of degree 10, coindex 3;
- (**n** = **6**) only special case occurs.

Hodge structures of GM manifolds

The integral cohomology is torsion-free and the upper Hodge diamonds are

$$n = 1) \quad (n = 2) \quad (n = 3) \quad (n = 4)$$

$$6^{1} 6 \quad 1^{0} \stackrel{1}{20} \stackrel{0}{1} \quad 0^{0} \stackrel{1}{10} \stackrel{0}{10} \quad 0^{0} \stackrel{1}{10} \stackrel{0}{10} \stackrel{0$$

Period maps for GM manifolds

When n is odd, the Hodge structure has level 1 and there are (p.p.) intermediate Jacobians and period maps

$$\wp_1 \colon \mathscr{M}_1 \longrightarrow \mathscr{A}_6 \quad , \quad \wp_3 \colon \mathscr{M}_3 \longrightarrow \mathscr{A}_{10} \quad , \quad \wp_5 \colon \mathscr{M}_5 \longrightarrow \mathscr{A}_{10}.$$

When n is even, the Hodge structure is of K3 type and the vanishing cohomology defines period maps

$$\wp_2 \colon \mathscr{M}_2 \longrightarrow \mathscr{D}_{19} \quad , \quad \wp_4 \colon \mathscr{M}_4 \longrightarrow \mathscr{D}_{20} \quad , \quad \wp_6 \colon \mathscr{M}_6 \longrightarrow \mathscr{D}_{20},$$

where \mathscr{D}_m is the quasi-projective quotient of a bounded symmetric domain of dimension m by a discrete group of automorphisms.

We know that \wp_1 and \wp_2 are closed embeddings. What about the other maps?

Period maps for GM manifolds

The dimensions are

п	1	2	3	4	5	6
$\dim(\mathcal{M}_n)$	15	19	22	24	25	25
dim (period space)	21	19	55	20	55	20

We will show that \wp_n is not injective for $n \ge 3$ and describe its fibers.

The magic trick (O'Grady, Iliev–Manivel)

Given a smooth (ordinary) GM *n*-fold

$$X := G(2, V_5) \cap \mathbf{P}(W_{n+5}) \cap Q \subset \mathbf{P}(\bigwedge^2 V_5),$$

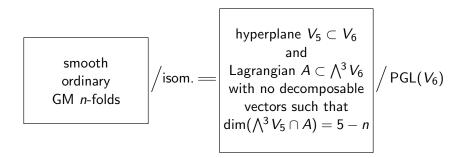
one can consider and construct

- the space V_6 of quadrics in $\mathbf{P}(W_{n+5})$ containing X;
- the hyperplane $V_5 \subset V_6$ of "Plücker quadrics";
- a Lagrangian subspace $A \subset \bigwedge^3 V_6$ such that

$$\dim(\bigwedge^3 V_5 \cap A) = 5 - n.$$

Parametrization of GM manifolds

This construction can be reversed and gives, for $n \ge 3$, a bijection (V_6 is a fixed 6-dimensional vector space)

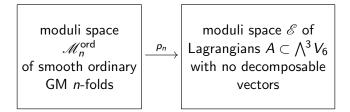


EPW stratification

Given a Lagrangian $A \subset \bigwedge^3 V_6$, we define the (dual) EPW stratification

$$Y_{A^{\perp}}^{\ell} := \{ [V_5] \in \mathbf{P}(V_6^{\vee}) \mid \dim(\bigwedge^3 V_5 \cap A) = \ell \}.$$

We rewrite the correspondence above as a morphism



and the fiber of [A] is $Y_{A^{\perp}}^{5-n}$ (modulo automorphisms).

EPW sextics

Theorem (O'Grady)

If the Lagrangian subspace $A \subset \bigwedge^3 V_6$ contains no decomposable vectors,

- $Y_{A^{\perp}}:=Y_{A^{\perp}}^{\geq 1}\subset {\bf P}(V_6^{\vee})$ is an integral sextic hypersurface;
- $Y_{A^{\perp}}^{\geq 2} = \text{Sing}(Y_{A^{\perp}})$ is an integral normal surface;
- $Y_{A^{\perp}}^{\geq 3}$ is finite and smooth, empty for A general;
- $Y_{A^{\perp}}^{\geq 4}$ is empty.

Putting everything together, we have

- *p*₅: *M*^{ord}₅ → *E*, fibers are complements of hypersurfaces in **P**⁵ (both *M*^{ord}₅ and *E* are affine);
- *p*₄: *M*^{ord}₄ → *E*, fibers are complements of surfaces in hypersurfaces in **P**⁵;
- $p_3: \mathscr{M}_3^{\text{ord}} \to \mathscr{E}$, fibers are surfaces (minus a finite set).

Ignoring stacky issues, these maps fit together and yield morphisms

$$p_n \colon \mathscr{M}_n = \mathscr{M}_n^{\operatorname{ord}} \sqcup \mathscr{M}_n^{\operatorname{spe}} = \mathscr{M}_n^{\operatorname{ord}} \sqcup \mathscr{M}_{n-1}^{\operatorname{ord}} \longrightarrow \mathscr{E}.$$

Corollary

For each $n \in \{3, 4, 5\}$, there exist non-isotrivial families of smooth GM varieties of dimension n parametrized by a proper curve.

Shafarevich conjecture and hyperbolicity

- The Shafarevich conjecture does not hold for Fano threefolds: the set of $\overline{\mathbf{Q}}$ -isomorphism classes of Fano threefolds with Picard number 2, defined over \mathbf{Q} and with good reduction outside $\{2, 29\}$, is infinite (the moduli space of blow ups of any line in a smooth intersection of two quadrics in $\mathbf{P}_{\mathbf{Q}}^{5}$ contains abelian surfaces; Javanpeykar–Loughran). What about GM manifolds?
- This is related (via the Lang-Vojta conjecture) to hyperbolicity of moduli spaces: do they contain entire curves? In our case, \mathcal{M}_4 and \mathcal{M}_5 do contain many (proper) rational or elliptic curves (\mathcal{M}_6 is affine). This is in contrast with a result of Viehweg-Zuo, which says that this cannot happen with moduli space of smooth projective varieties with *ample* canonical bundle.

Main theorem

Theorem (D.–Iliev–Manivel, D.–Kuznetsov)

The period map \wp_n for GM manifolds of dimension $n \in \{3, 4, 6\}$ factors through $p_n: \mathscr{M}_n \to \mathscr{E}$. In particular, it has positive dimensional fibers.

When n = 3 ([DIM]): explicit birational isomorphisms between GM threefolds with same A.

Periods of double EPW sextics

There is a canonical double cover $\widetilde{Y}_{\mathcal{A}^{\perp}} \to Y_{\mathcal{A}^{\perp}}$.

Theorem (O'Grady)

If A has no decomposable vectors and $Y_{A^{\perp}}^{\geq 3} = \emptyset$, the fourfold $\widetilde{Y}_{A^{\perp}}$ is a HK manifold of K3^[2]-type.

Theorem (D.–Kuznetsov)

If X is a GM manifold of dimension $n \in \{4, 6\}$, with Lagrangian A, there is an isomorphism of polarized Hodge structures

$$H^n(X; \mathbf{Z})_{00} \cong H^2(\widetilde{Y}_{\mathcal{A}^\perp}; \mathbf{Z})_0((-1)^{n/2-1}).$$

Periods of double EPW sextics

Corollary (D.–Kuznetsov)

When $n \in \{4, 6\}$, there is a factorization

$$\wp_n\colon \mathscr{M}_n \xrightarrow{p_n} \mathscr{E} \xrightarrow{\wp} \mathscr{D}_{20},$$

where the period map \wp is an open embedding.

The last statement is a theorem of Verbitsky.

Method of proof

We consider the dual situation $\widetilde{Y}_A \to Y_A \subset \mathbf{P}(V_6)$ and the inverse image $\widetilde{Y}_{A,V_5} \subset \widetilde{Y}_A$ of the hyperplane $V_5 \subset V_6$.

As for cubic fourfolds, the isomorphism in the theorem is given by a correspondence, using

- when n = 4, the (smooth) variety of lines in X, a small resolution of Y
 _{A,V5};
- when n = 6, the (smooth) variety of σ -planes in X, a \mathbf{P}^1 -bundle over \widetilde{Y}_{A, V_5} .

Birationalities

Theorem (D.–Iliev–Manivel, D.–Kuznetsov)

Any GM manifolds of the same dimension with isomorphic associated Lagrangians are birationally isomorphic.

In particular, the rationality of a GM manifold only depends on its associated Lagrangian, hence on its period point. When n = 3, a general GM manifold is not rational (use intermediate Jacobian). When $n \in \{5, 6\}$, all GM manifolds are rational. When n = 4, the situation is analogous to that of cubic fourfolds:

some rational examples are known, but one expects very general GM fourfolds to be irrational.