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Definition of GM varieties

A Gushel–Mukai variety of dimension n is

(ordinary type) a transverse intersection

X := G (2,V
5

) \ P(Wn+5

) \ Q ⇢ P(
V

2V
5

)

(special type) a double cover

X �! M := G (2,V
5

) \ P(Wn+4

) ⇢ P(
V

2V
5

)

branched along M \ Q.
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Characterization of GM varieties

One has KX ⌘
lin
(2� n)H and Hn = 10. GM manifolds are:

(n = 1) genus-6 curves with Cli↵ord index 2 (not hyperelliptic,
not trigonal, not a plane quintic), special , bielliptic;

(n = 2) degree-10 K3 surfaces whose polarization contains a
genus-6 curve with Cli↵ord index 2, special , hyperelliptic;

(n = 3, 4, 5, 6) prime Fano n-folds of degree 10, coindex 3;

(n = 6) only special case occurs.
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Hodge structures of GM manifolds

The integral cohomology is torsion-free and the upper Hodge
diamonds are

(n = 1) (n = 2) (n = 3) (n = 4)

1

6 6

1

0 0

1 20 1

1

0 0

0 1 0

0 10 10 0

1

0 0

0 1 0

0 0 0 0

0 1 22 1 0

(n = 5) (n = 6)
1

0 0

0 1 0

0 0 0 0

0 0 2 0 0

0 0 10 10 0 0

1

0 0

0 1 0

0 0 0 0

0 0 2 0 0

0 0 0 0 0 0

0 0 1 22 1 0 0
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Period maps for GM manifolds

When n is odd, the Hodge structure has level 1 and there are
(p.p.) intermediate Jacobians and period maps

}
1

: M
1

�! A
6

, }
3

: M
3

�! A
10

, }
5

: M
5

�! A
10

.

When n is even, the Hodge structure is of K3 type and the
vanishing cohomology defines period maps

}
2

: M
2

�! D
19

, }
4

: M
4

�! D
20

, }
6

: M
6

�! D
20

,

where Dm is the quasi-projective quotient of a bounded symmetric
domain of dimension m by a discrete group of automorphisms.

We know that }
1

and }
2

are closed embeddings. What about the
other maps?
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Period maps for GM manifolds

The dimensions are

n 1 2 3 4 5 6
dim(Mn) 15 19 22 24 25 25

dim (period space) 21 19 55 20 55 20

We will show that }n is not injective for n � 3 and describe its
fibers.
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The magic trick (O’Grady, Iliev–Manivel)

Given a smooth (ordinary) GM n-fold

X := G (2,V
5

) \ P(Wn+5

) \ Q ⇢ P(
V

2V
5

),

one can consider and construct

the space V
6

of quadrics in P(Wn+5

) containing X ;

the hyperplane V
5

⇢ V
6

of “Plücker quadrics”;

a Lagrangian subspace A ⇢
V

3V
6

such that

dim(
V

3V
5

\ A) = 5� n.
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Parametrization of GM manifolds

This construction can be reversed and gives, for n � 3, a bijection
(V

6

is a fixed 6-dimensional vector space)

smooth
ordinary

GM n-folds

.
isom.

hyperplane V
5

⇢ V
6

and
Lagrangian A ⇢

V
3V

6

with no decomposable
vectors such that

dim(
V

3V
5

\ A) = 5� n

.
PGL(V

6

)
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EPW stratification

Given a Lagrangian A ⇢
V

3V
6

, we define the (dual) EPW
stratification

Y `
A? := {[V

5

] 2 P(V _
6

) | dim(
V

3V
5

\ A) = `}.

We rewrite the correspondence above as a morphism

moduli space
M ord

n

of smooth ordinary
GM n-folds

pn
//

moduli space E of
Lagrangians A ⇢

V
3V

6

with no decomposable
vectors

and the fiber of [A] is Y 5�n
A? (modulo automorphisms).
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EPW sextics

Theorem (O’Grady)

If the Lagrangian subspace A ⇢
V

3V
6

contains no decomposable
vectors,

YA? := Y�1

A? ⇢ P(V _
6

) is an integral sextic hypersurface;

Y�2

A? = Sing(YA?) is an integral normal surface;

Y�3

A? is finite and smooth, empty for A general;

Y�4

A? is empty.
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Putting everything together, we have

p
5

: M ord

5

! E , fibers are complements of hypersurfaces in P5

(both M ord

5

and E are a�ne);

p
4

: M ord

4

! E , fibers are complements of surfaces in
hypersurfaces in P5;

p
3

: M ord

3

! E , fibers are surfaces (minus a finite set).

Ignoring stacky issues, these maps fit together and yield morphisms

pn : Mn = M ord

n t M spe

n = M ord

n t M ord

n�1

�! E .

Corollary

For each n 2 {3, 4, 5}, there exist non-isotrivial families of smooth
GM varieties of dimension n parametrized by a proper curve.
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Shafarevich conjecture and hyperbolicity

The Shafarevich conjecture does not hold for Fano threefolds:
the set of Q̄-isomorphism classes of Fano threefolds with
Picard number 2, defined over Q and with good reduction
outside {2, 29}, is infinite (the moduli space of blow ups of
any line in a smooth intersection of two quadrics in P5

Q
contains abelian surfaces; Javanpeykar–Loughran). What
about GM manifolds?
This is related (via the Lang–Vojta conjecture) to
hyperbolicity of moduli spaces: do they contain entire curves?
In our case, M

4

and M
5

do contain many (proper) rational or
elliptic curves (M

6

is a�ne). This is in contrast with a result
of Viehweg–Zuo, which says that this cannot happen with
moduli space of smooth projective varieties with ample
canonical bundle.
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Main theorem

Theorem (D.–Iliev–Manivel, D.–Kuznetsov)

The period map }n for GM manifolds of dimension n 2 {3, 4, 6}
factors through pn : Mn ! E . In particular, it has positive
dimensional fibers.

When n = 3 ([DIM]): explicit birational isomorphisms between GM
threefolds with same A.
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Periods of double EPW sextics

There is a canonical double cover eYA? ! YA? .

Theorem (O’Grady)

If A has no decomposable vectors and Y�3

A? = ?, the fourfold eYA?

is a HK manifold of K3[2]-type.

Theorem (D.–Kuznetsov)

If X is a GM manifold of dimension n 2 {4, 6}, with Lagrangian A,
there is an isomorphism of polarized Hodge structures

Hn(X ;Z)
00

⇠= H2( eYA? ;Z)
0

((�1)n/2�1).
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Periods of double EPW sextics

Corollary (D.–Kuznetsov)

When n 2 {4, 6}, there is a factorization

}n : Mn
pn��! E

}��! D
20

,

where the period map } is an open embedding.

The last statement is a theorem of Verbitsky.
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Method of proof

We consider the dual situation eYA ! YA ⇢ P(V
6

) and the inverse
image eYA,V

5

⇢ eYA of the hyperplane V
5

⇢ V
6

.

As for cubic fourfolds, the isomorphism in the theorem is given by
a correspondence, using

when n = 4, the (smooth) variety of lines in X , a small
resolution of eYA,V

5

;

when n = 6, the (smooth) variety of �-planes in X , a
P1-bundle over eYA,V

5

.
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Birationalities

Theorem (D.–Iliev–Manivel, D.–Kuznetsov)

Any GM manifolds of the same dimension with isomorphic
associated Lagrangians are birationally isomorphic.

In particular, the rationality of a GM manifold only depends on its
associated Lagrangian, hence on its period point.
When n = 3, a general GM manifold is not rational (use
intermediate Jacobian).
When n 2 {5, 6}, all GM manifolds are rational.
When n = 4, the situation is analogous to that of cubic fourfolds:
some rational examples are known, but one expects very general
GM fourfolds to be irrational.
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