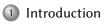
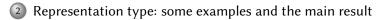
Daniele Faenzi

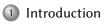
Insitut de Mathématiques de Bourgogne UMR 5584

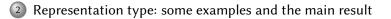
with Joan Pons Llopis, Kyoto

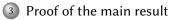
Plan











$$f = 2x^3 - x^2 - y^2 - 2x + 1 \in R = \mathbb{R}[x, y]$$

$$f = 2x^{3} - x^{2} - y^{2} - 2x + 1 \in R = \mathbb{R}[x, y]$$

$$f = \begin{vmatrix} 1 & x & 0 \\ x & 1 & y \\ 0 & y & 1 - 2x \end{vmatrix}$$

$$f = x_0 x_1 + x_2 x_3 = \det(\mathcal{M})$$

$$f = x_0 x_1 + x_2 x_3 = \det(\mathcal{M})$$

 $\mathcal{M} = \begin{pmatrix} x_0 & -x_2 \\ x_3 & x_1 \end{pmatrix}$

$$f = x_0 x_1 + x_2 x_3 + x_4 x_5 + x_6 x_7$$

$$f = x_0 x_1 + x_2 x_3 + x_4 x_5 + x_6 x_7$$

	0	0	0	$-x_{4}$		$-x_{2}$	<i>x</i> ₆	$-x_0$	l
$f^4 =$	0	0	<i>x</i> ₄	0	<i>x</i> ₂	0	$-x_{1}$	$-x_{7}$	
	0	$-x_{4}$	0	0	$-x_{6}$	<i>x</i> ₁	0	$-x_{3}$	
	<i>x</i> ₄	0	0	0	x_0	<i>x</i> ₇	<i>x</i> ₃	0	
	0	$-x_{2}$	<i>x</i> ₆	$-x_{1}$	0	0	0	0 x ₅	
	<i>x</i> ₂	0	$-x_{0}$	$-x_{7}$	0	0	$-x_{5}$		
	$-x_6$	x_0	0	$-x_{3}$	0	x 5	0	0	
	<i>x</i> ₁	x ₇	<i>x</i> ₃	0	$-x_{5}$	0	0	0	

2 Fixed *f*, describe moduli of all *M*.

2 Fixed *f*, describe moduli of all *M*.

 $M \Leftrightarrow \mathcal{E}$ sheaf on $X: \mathcal{E}_x = \operatorname{coker}(M_x)$.

2 Fixed *f*, describe moduli of all *M*.

 $M \Leftrightarrow \mathcal{E}$ sheaf on $X: \mathcal{E}_x = \operatorname{coker}(M_x)$.

Cohen-Macaulay condition $\mathcal{E} \in CM(X)$:

2 Fixed *f*, describe moduli of all *M*.

 $M \Leftrightarrow \mathcal{E}$ sheaf on $X: \mathcal{E}_x = \operatorname{coker}(M_x)$.

Cohen-Macaulay condition $\mathcal{E} \in CM(X)$:

• Sheaf $\mathcal{E} = \operatorname{coker}(M)$ locally CM, without intermediate cohomology

 $H^i_*(E) = \bigoplus_t H^i(\mathcal{E}(t))$ vanishes for 0 < i < n.

2 Fixed *f*, describe moduli of all *M*.

 $M \Leftrightarrow \mathcal{E}$ sheaf on $X: \mathcal{E}_x = \operatorname{coker}(M_x)$.

Cohen-Macaulay condition $\mathcal{E} \in CM(X)$:

• Sheaf $\mathcal{E} = \operatorname{coker}(M)$ locally CM, without intermediate cohomology

 $H^i_*(E) = \bigoplus_t H^i(\mathcal{E}(t))$ vanishes for 0 < i < n.

• Module $E = \operatorname{coker}(M) = H^0_*(\mathcal{E})$ is MCM on $\mathbb{K}[X]$.

2 Fixed *f*, describe moduli of all *M*.

$$M \Leftrightarrow \mathcal{E}$$
 sheaf on $X: \mathcal{E}_x = \operatorname{coker}(M_x)$.

Cohen-Macaulay condition $\mathcal{E} \in CM(X)$:

• Sheaf $\mathcal{E} = \operatorname{coker}(M)$ locally CM, without intermediate cohomology

 $H^i_*(E) = \oplus_t H^i(\mathcal{E}(t))$ vanishes for 0 < i < n.

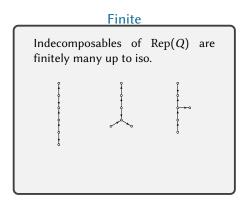
- Module $E = \operatorname{coker}(M) = H^0_*(\mathcal{E})$ is MCM on $\mathbb{K}[X]$.
- *R*-resolution of *E* has length *N* − *n*.

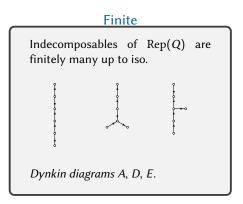
1 Introduction

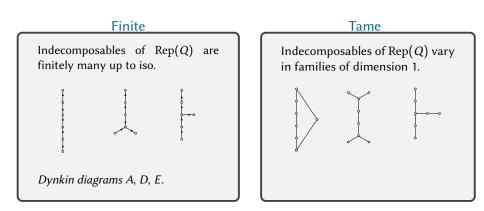
2 Representation type: some examples and the main result

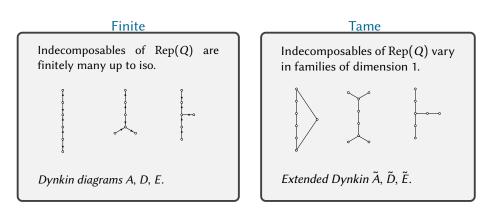
³ Proof of the main result

Quiver Q: finite (connected) directed graph. No ortiented loops $\mathbb{K}[Q]$ -modules $\operatorname{Rep}(Q)$ category of \mathbb{K} -linear maps indexed by arrows of Q

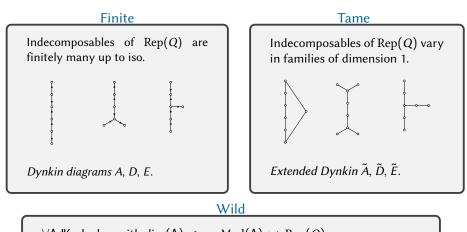






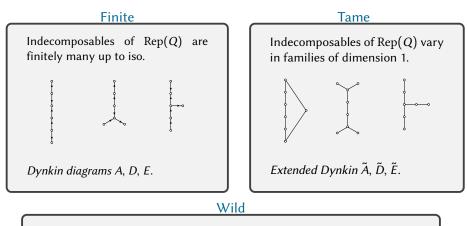


Representation type measures the complexity of $\operatorname{Rep}(Q)$



 $\forall \Lambda \text{ IK-algebra with } \dim(\Lambda) < \infty, \operatorname{Mod}(\Lambda) \hookrightarrow \operatorname{Rep}(Q).$

Representation type measures the complexity of $\operatorname{Rep}(Q)$



 $\forall \Lambda \text{ IK-algebra with } \dim(\Lambda) < \infty, \operatorname{Mod}(\Lambda) \hookrightarrow \operatorname{Rep}(Q).$ Any other quiver.

Meanings of $Mod(\Lambda) \hookrightarrow Rep(Q)$

• There is a fully faithful functor $Mod(\Lambda) \rightarrow Rep(Q)$ (strictly wild)

Meanings of $Mod(\Lambda) \hookrightarrow Rep(Q)$

- There is a fully faithful functor $Mod(\Lambda) \rightarrow Rep(Q)$ (strictly wild)
- \exists functor $\Phi : Mod(\Lambda) \to Rep(Q)$ which is a representation embedding

Meanings of $Mod(\Lambda) \hookrightarrow Rep(Q)$

- There is a fully faithful functor $Mod(\Lambda) \rightarrow Rep(Q)$ (strictly wild)
- \exists functor $\Phi : Mod(\Lambda) \to Rep(Q)$ which is a representation embedding • $\Phi(M) \simeq \Phi(M')$ iff $M \simeq M'$;

Meanings of $Mod(\Lambda) \hookrightarrow Rep(Q)$

- There is a fully faithful functor $Mod(\Lambda) \rightarrow Rep(Q)$ (strictly wild)
- \exists functor $\Phi : Mod(\Lambda) \to Rep(Q)$ which is a representation embedding
 - $\Phi(M) \simeq \Phi(M')$ iff $M \simeq M'$;
 - $\Phi(M)$ is decomposable iff *M* is decomposable.

1 Introduction

2 Representation type: some examples and the main result

³ Proof of the main result

Complexity of the category CM(X), for $X \subset \mathbb{P}^n$ projective.

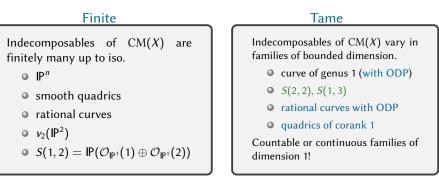
Complexity of the category CM(X), for $X \subset \mathbb{P}^n$ projective.

Finite

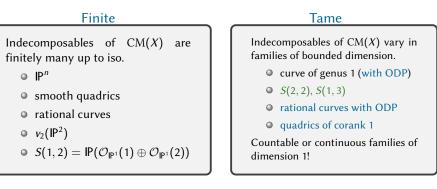
Indecomposables of CM(X) are finitely many up to iso.
IPⁿ
smooth quadrics
rational curves

- $v_2(\mathbb{IP}^2)$
- $S(1,2) = IP(\mathcal{O}_{IP^1}(1) \oplus \mathcal{O}_{IP^1}(2))$

Complexity of the category CM(X), for $X \subset \mathbb{P}^n$ projective.



Complexity of the category CM(X), for $X \subset \mathbb{P}^n$ projective.



Wild

 $\forall \Lambda \text{ IK-algebra of finite dimension, } Mod(\Lambda) \hookrightarrow CM(X).$

1 Introduction

2 Representation type: some examples and the main result

³ Proof of the main result

Finite

Countable

Representation type of curves

d = 3

Degree $d \ge 3$

Representation type of curves

Drozd-Greuel CM type of curves

- Finite iff rational normal curve
- Countable iff $p_g = 0$ with ODP
- Tame iff $p_g = 1$ (perhaps with ODP)
- Wild iff $p_g \ge 2$ or more singular than ODP

1 Introduction

2 Representation type: some examples and the main result

³ Proof of the main result

CM-representation type of ACM varieties

Theorem

Let $X \subset \mathbb{P}^N$ be a closed integral subscheme, $n = \dim(X) > 0$. Assume:

- IK is algebraically closed;
- X is not a cone;
- $\mathcal{O}_X \in CM(X)$ i.e. X is ACM;
- X is not one of the 9 finite or tame cases we already met.

CM-representation type of ACM varieties

Theorem

Let $X \subset \mathbb{P}^N$ be a closed integral subscheme, $n = \dim(X) > 0$. Assume:

- IK is algebraically closed;
- X is not a cone;
- $\mathcal{O}_X \in CM(X)$ i.e. X is ACM;
- X is not one of the 9 finite or tame cases we already met.

Then X is of wild CM type.

Plan

1 Introduction

Representation type: some examples and the main result

3 Proof of the main result

Enough to be wild

$\operatorname{Rep}(K_s) \hookrightarrow \operatorname{CM}(X), \exists s \geq 3$

1 Quiver K_s with 2 vertexes and s arrows

Enough to be wild

$\operatorname{Rep}(K_s) \hookrightarrow \operatorname{CM}(X), \exists s \geq 3$

Quiver K_s with 2 vertexes and s arrows

2 Condition (\star) :

Enough to be wild

 $\operatorname{Rep}(K_s) \hookrightarrow \operatorname{CM}(X), \exists s \geq 3$

Quiver K_s with 2 vertexes and s arrows

② Condition (*): find simple $\mathcal{E} \perp \mathcal{F} \in CM(X)$ with

 $\dim_{\mathbb{K}} \operatorname{Ext}^{1}_{X}(\mathcal{E}, \mathcal{F}) = s \geq 3.$

Plan

1 Introduction

Representation type: some examples and the main result

3 Proof of the main result

Key lemma. Set dim(Y) = m > 0.

Key lemma. Set dim(Y) = m > 0.

① \mathcal{E} ∈ U_{*r*}(*Y*) rank-*r* Ulrich sheaf \mathcal{E} ∈ CM(*Y*) with *R*-linear resolution.

Key lemma. Set $\dim(Y) = m > 0$.

- **1** $\mathcal{E} \in U_r(Y)$ rank-*r* Ulrich sheaf $\mathcal{E} \in CM(Y)$ with *R*-linear resolution.
- 2 U(Y) category of Ulrich sheaves on *Y*.

 $\Omega^c: \mathsf{U}(Y) \hookrightarrow \underline{\mathrm{CM}}(X)$

c-th stable syzygy functor of *E* as $\mathbb{K}[X]$ -module.

Key lemma. Set $\dim(Y) = m > 0$.

- **1** $\mathcal{E} \in U_r(Y)$ rank-*r* Ulrich sheaf $\mathcal{E} \in CM(Y)$ with *R*-linear resolution.
- 2 U(Y) category of Ulrich sheaves on Y.

 $\Omega^c: U(Y) \hookrightarrow \underline{CM}(X)$

c-th stable syzygy functor of *E* as $\mathbb{K}[X]$ -module.

3 Stable category $\underline{CM}(X)$ kills morphisms through free modules.

Key lemma. Set $\dim(Y) = m > 0$.

- **(1)** $\mathcal{E} \in U_r(Y)$ rank-*r* Ulrich sheaf $\mathcal{E} \in CM(Y)$ with *R*-linear resolution.
- 2 U(Y) category of Ulrich sheaves on Y.

 $\Omega^c : U(Y) \hookrightarrow \underline{CM}(X)$

c-th stable syzygy functor of *E* as $\mathbb{K}[X]$ -module.

- 3 Stable category $\underline{CM}(X)$ kills morphisms through free modules.
- **(4)** Recover $E^*(c)$ as quotient of $\Omega^c(E)^*$ by elements of degree $\leq 1 c$.

Key lemma. Set $\dim(Y) = m > 0$.

- **(1)** $\mathcal{E} \in U_r(Y)$ rank-*r* Ulrich sheaf $\mathcal{E} \in CM(Y)$ with *R*-linear resolution.
- 2 U(Y) category of Ulrich sheaves on Y.

 $\Omega^c: U(Y) \hookrightarrow \underline{CM}(X)$

c-th stable syzygy functor of *E* as $\mathbb{K}[X]$ -module.

- 3 Stable category $\underline{CM}(X)$ kills morphisms through free modules.
- **(4)** Recover $E^*(c)$ as quotient of $\Omega^c(E)^*$ by elements of degree $\leq 1 c$.
- Solution Need $K_Y(m-1)$ effective, equivalent to positive sectional genus.

Plan

1 Introduction

Representation type: some examples and the main result

Proof of the main result

Warm up: del Pezzo-Bertini

• *X* not a cone \Rightarrow *X* smooth.

Warm up: del Pezzo-Bertini

- X not a cone \Rightarrow X smooth.
- $X = v_2(\mathbb{P}^2)$ or $X = S(\vec{a})$ or a quadric.

Warm up: del Pezzo-Bertini

- X not a cone \Rightarrow X smooth.
- $X = v_2(\mathbb{P}^2)$ or $X = S(\vec{a})$ or a quadric.
- $\mathcal{E} = \mathcal{O}_X(H F)$ and $\mathcal{F} = \mathcal{O}_X((d 1)F)$ give (*). *X* strictly Ulrich wild.

Warm up: del Pezzo-Bertini

- X not a cone \Rightarrow X smooth.
- $X = v_2(\mathbb{P}^2)$ or $X = S(\vec{a})$ or a quadric.
- $\mathcal{E} = \mathcal{O}_X(H F)$ and $\mathcal{F} = \mathcal{O}_X((d 1)F)$ give (*). X strictly Ulrich wild.
- Except for quadrics, v₂(IP²), S(1, 2), S(1, 3) and S(2, 2).

Warm up: del Pezzo-Bertini

- X not a cone \Rightarrow X smooth.
- $X = v_2(\mathbb{P}^2)$ or $X = S(\vec{a})$ or a quadric.
- $\mathcal{E} = \mathcal{O}_X(H F)$ and $\mathcal{F} = \mathcal{O}_X((d 1)F)$ give (\star) . X strictly Ulrich wild.
- Except for quadrics, $v_2(\mathbb{P}^2)$, S(1, 2), S(1, 3) and S(2, 2).

Tame cases

• Use derived categories for S(1,3) and S(2,2).

Warm up: del Pezzo-Bertini

- X not a cone \Rightarrow X smooth.
- $X = v_2(\mathbb{P}^2)$ or $X = S(\vec{a})$ or a quadric.
- $\mathcal{E} = \mathcal{O}_X(H F)$ and $\mathcal{F} = \mathcal{O}_X((d 1)F)$ give (\star) . X strictly Ulrich wild.
- Except for quadrics, $v_2(\mathbb{P}^2)$, S(1, 2), S(1, 3) and S(2, 2).

Tame cases

- Use derived categories for S(1, 3) and S(2, 2).
- Work in progress for singular cases e.g. S(0, 3).

With FRANCESCO MALASPINA: CM(X) for S(1, 3) and S(2, 2). Only Ulrich bundles move. Finitely many more.

With FRANCESCO MALASPINA: CM(X) for S(1, 3) and S(2, 2).

- Only Ulrich bundles move. Finitely many more.
- ② Indecomposables in $U_r(X)$ are a \mathbb{P}^1 for *r* even, a point for *r* odd.

With FRANCESCO MALASPINA: CM(X) for S(1,3) and S(2,2).

- Only Ulrich bundles move. Finitely many more.
- ② Indecomposables in $U_r(X)$ are a \mathbb{P}^1 for *r* even, a point for *r* odd.
- 3 Use derived $\pi^*\pi_*\mathcal{E} \to \mathcal{E}$ with $\pi: X \to \mathbb{P}^1$ to unwind \mathcal{E} .

Plan

1 Introduction

Representation type: some examples and the main result

3 Proof of the main result

Reduce to curves, m = 1

• $p_g(Y) \geq 2$.

Reduce to curves, m = 1

- $p_g(Y) \geq 2$.
- $\bullet\,$ Take ${\cal F}$ and ${\cal E}$ generic in the compactified Jacobian.

Reduce to curves, m = 1

•
$$p_g(Y) \geq 2$$
.

• Take \mathcal{F} and \mathcal{E} generic in the compactified Jacobian.

• If
$$c_1(\mathcal{E}) = c_1(\mathcal{F}) = d + g - 1$$
 then $\mathcal{E} \perp \mathcal{F} \in U_1(Y)$.

Reduce to curves, m = 1

•
$$p_g(Y) \geq 2$$
.

- $\bullet\,$ Take ${\cal F}$ and ${\cal E}$ generic in the compactified Jacobian.
- If $c_1(\mathcal{E}) = c_1(\mathcal{F}) = d + g 1$ then $\mathcal{E} \perp \mathcal{F} \in U_1(Y)$.
- Use extensions to reach $\mathcal{E}' \perp \mathcal{F}' \in U_2(Y)$ with (\star) .

Plan

1 Introduction

Representation type: some examples and the main result

3 Proof of the main result

Reduce to del Pezzo surfaces, m = 2

• *Y* may be non-normal.

Reduce to del Pezzo surfaces, m = 2

- *Y* may be non-normal.
- Normal $Y: \mathcal{E} \perp \mathcal{F} \in U_2(Y)$ with (\star) .

Easy by Serre construction from d + 2 points.

Reduce to del Pezzo surfaces, m = 2

- *Y* may be non-normal.
- Normal $Y: \mathcal{E} \perp \mathcal{F} \in U_2(Y)$ with (\star) . Easy by Serre construction from d + 2 points.
- Beware $U_1(Y) = \emptyset$ e.g. if Y is a cubic with E_6 singularity.

Reduce to del Pezzo surfaces, m = 2

- *Y* may be non-normal.
- Normal $Y: \mathcal{E} \perp \mathcal{F} \in U_2(Y)$ with (\star) . Easy by Serre construction from d + 2 points.
- Beware $U_1(Y) = \emptyset$ e.g. if Y is a cubic with E_6 singularity.
- If Y is not normal then \overline{Y} has minimal degre.

Non normal del Pezzo surfaces

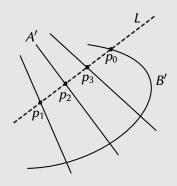
- $\mathcal{E} \perp \mathcal{F}$ image of Ulrich line bundles on \overline{Y} via $\pi : \overline{Y} \rightarrow Y$.
 - E.g. Y cubic surface with a line L of singularities

$$x_1^3 + x_0^2 x_2 - x_0 x_1 x_3 = \begin{vmatrix} x_0 & x_1 & 0 \\ x_1 & x_3 & -x_0 \\ 0 & x_2 & -x_1 \end{vmatrix}$$

Non normal del Pezzo surfaces

- $\mathcal{E} \perp \mathcal{F}$ image of Ulrich line bundles on \overline{Y} via $\pi : \overline{Y} \rightarrow Y$.
 - E.g. Y cubic surface with a line L of singularities

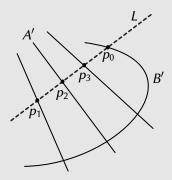
$$x_1^3 + x_0^2 x_2 - x_0 x_1 x_3 = egin{bmatrix} x_0 & x_1 & 0 \ x_1 & x_3 & -x_0 \ 0 & x_2 & -x_1 \end{bmatrix}$$



Non normal del Pezzo surfaces

- $\mathcal{E} \perp \mathcal{F}$ image of Ulrich line bundles on \overline{Y} via $\pi : \overline{Y} \rightarrow Y$.
 - E.g. Y cubic surface with a line L of singularities

$$x_1^3 + x_0^2 x_2 - x_0 x_1 x_3 = egin{bmatrix} x_0 & x_1 & 0 \ x_1 & x_3 & -x_0 \ 0 & x_2 & -x_1 \end{bmatrix}$$



• Use A' and B' projected from \overline{Y} to compute $\mathcal{E}xt_Y^1(\mathcal{E},\mathcal{F})$ and deduce (\star) .

1) If X not ACM?

- 1) If X not ACM?
- ② Cones? S(0,3)?

- 1 If X not ACM?
- ② Cones? S(0,3)?
- ③ Reducible? Non reduced?

- 1 If X not ACM?
- ② Cones? S(0,3)?
- ③ Reducible? Non reduced?
- ④ ACM of rank *r* bounded on smooth *X*?

- 1 If X not ACM?
- ② Cones? S(0,3)?
- ③ Reducible? Non reduced?
- ④ ACM of rank *r* bounded on smooth *X*?
- Ouasiprojective?

- ① If X not ACM?
- ② Cones? S(0,3)?
- ③ Reducible? Non reduced?
- ④ ACM of rank *r* bounded on smooth *X*?
- Ouasiprojective?
- Moduli?

- 1 If X not ACM?
- ② Cones? S(0,3)?
- ③ Reducible? Non reduced?
- ④ ACM of rank *r* bounded on smooth *X*?
- ④ Quasiprojective?
- Moduli?
- ② Classify rigid ACM sheaves.

- If X not ACM?
- ② Cones? S(0,3)?
- ③ Reducible? Non reduced?
- ④ ACM of rank *r* bounded on smooth *X*?
- ④ Quasiprojective?
- Moduli?
- ② Classify rigid ACM sheaves.
- 8 Remove Ulrich sheaves. Does X remain wild?

1 If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).

- 1 If X is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.

- 1 If X is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- 3 Whan happens for reducible or non-reduced varieties?

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0, 3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- 3 Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.

④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- Son-projective varieties? Elliptic singularities are tame.

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- Son-projective varieties? Elliptic singularities are tame.
- 6 Can we define moduli of ACM sheaves? Typically unstable.

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- Son-projective varieties? Elliptic singularities are tame.
- **6** Can we define moduli of ACM sheaves? Typically unstable.
- ② Classify rigid ACM sheaves on (some) CM-wild varieties.

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- 5 Non-projective varieties? Elliptic singularities are tame.
- **6** Can we define moduli of ACM sheaves? Typically unstable.
- ② Classify rigid ACM sheaves on (some) CM-wild varieties.
 - Done for $v_3(\mathbb{P}^2)$ and $v_2(\mathbb{P}^3)$ (cf. Iyama-Yoshino).

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- 5 Non-projective varieties? Elliptic singularities are tame.
- **6** Can we define moduli of ACM sheaves? Typically unstable.
- ② Classify rigid ACM sheaves on (some) CM-wild varieties.
 - Done for $v_3(\mathbb{P}^2)$ and $v_2(\mathbb{P}^3)$ (cf. Iyama-Yoshino).
 - Transitivity of the braid group action on rigid objects.

- 1 If X is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- Son-projective varieties? Elliptic singularities are tame.
- **6** Can we define moduli of ACM sheaves? Typically unstable.
- ② Classify rigid ACM sheaves on (some) CM-wild varieties.
 - Done for $v_3(\mathbb{P}^2)$ and $v_2(\mathbb{P}^3)$ (cf. Iyama-Yoshino).
 - Transitivity of the braid group action on rigid objects.
- It is a state of the CM-finite or tame cases.
 It is a state of the CM-finite or tame cases.

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- Son-projective varieties? Elliptic singularities are tame.
- **6** Can we define moduli of ACM sheaves? Typically unstable.
- ② Classify rigid ACM sheaves on (some) CM-wild varieties.
 - Done for $v_3(\mathbb{P}^2)$ and $v_2(\mathbb{P}^3)$ (cf. Iyama-Yoshino).
 - Transitivity of the braid group action on rigid objects.
- S X projective, not one of the CM-finite or tame cases. Is X (strictly) Ulrich wild?

- **1** If *X* is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).
- ② Whan happens for cones? Most are wild. S(0,3) should be tame.
- Whan happens for reducible or non-reduced varieties?
 - ► Some reducible varieties of minimal degree could be tame.
 - Representation type should go "up" for special fibres.
- ④ X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?
- 5 Non-projective varieties? Elliptic singularities are tame.
- **6** Can we define moduli of ACM sheaves? Typically unstable.
- ② Classify rigid ACM sheaves on (some) CM-wild varieties.
 - Done for $v_3(\mathbb{P}^2)$ and $v_2(\mathbb{P}^3)$ (cf. Iyama-Yoshino).
 - Transitivity of the braid group action on rigid objects.
- Solution & Solution
 - If we remove Ulrich sheaves, does X remain CM-wild?