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Determinantal representations

f = 2x3 − x2 − y2 − 2x + 1 ∈ R = R[x, y]
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Determinantal representations

f = x0x1 + x2x3 = det(M)
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Determinantal representations

f = x0x1 + x2x3 + x4x5 + x6x7
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Determinantal representations

f = x0x1 + x2x3 + x4x5 + x6x7

f 4 =

∣∣∣∣∣∣∣∣∣∣∣

0 0 0 −x4 0 −x2 x6 −x0

0 0 x4 0 x2 0 −x1 −x7

0 −x4 0 0 −x6 x1 0 −x3

x4 0 0 0 x0 x7 x3 0

0 −x2 x6 −x1 0 0 0 x5

x2 0 −x0 −x7 0 0 −x5 0

−x6 x0 0 −x3 0 x5 0 0

x1 x7 x3 0 −x5 0 0 0

∣∣∣∣∣∣∣∣∣∣∣
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1 Given f ⇒ construct M with det(M) = f r , r =rank.

2 Fixed f , describe moduli of all M.

M⇔ E sheaf on X : Ex = coker(Mx).

Cohen-Macaulay condition E ∈ CM(X):

Sheaf E = coker(M) locally CM, without intermediate cohomology

Hi
∗(E) = ⊕tHi(E(t)) vanishes for 0 < i < n.

Module E = coker(M) = H0

∗(E) is MCM on K[X ].

R-resolution of E has length N − n.
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Representation type of quivers

�iver Q: finite (connected) directed graph. No ortiented loops

K[Q]-modules Rep(Q) category of K-linear maps indexed by arrows of Q

Finite

Indecomposables of Rep(Q) are

finitely many up to iso.

Dynkin diagrams A, D, E .

Tame

Indecomposables of Rep(Q) vary

in families of dimension 1.

Extended Dynkin Ã, D̃, Ẽ .

Wild

∀Λ K-algebra with dim(Λ) <∞, Mod(Λ) ↪→ Rep(Q).

Any other quiver.
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Wild

∀Λ K-algebra with dim(Λ) <∞, Mod(Λ) ↪→ Rep(Q).

Any other quiver.

6 / 27



Representation type of quivers

Representation type measures the complexity of Rep(Q)

Finite

Indecomposables of Rep(Q) are

finitely many up to iso.

Dynkin diagrams A, D, E .

Tame

Indecomposables of Rep(Q) vary

in families of dimension 1.

Extended Dynkin Ã, D̃, Ẽ .
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To be more precise. . .

Meanings of Mod(Λ) ↪→ Rep(Q)

There is a fully faithful functor Mod(Λ)→ Rep(Q) (strictly wild)

∃ functor Φ : Mod(Λ)→ Rep(Q) which is a representation embedding

I Φ(M) ' Φ(M′) i� M ' M′
;

I Φ(M) is decomposable i� M is decomposable.
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CM Representation type of varieties

Complexity of the category CM(X), for X ⊂ Pn
projective.

Finite

Indecomposables of CM(X) are

finitely many up to iso.

Pn

smooth quadrics

rational curves

v2(P
2)

S(1, 2) = P(OP1(1)⊕OP1(2))

Tame

Indecomposables of CM(X) vary in

families of bounded dimension.

curve of genus 1 (with ODP)

S(2, 2), S(1, 3)

rational curves with ODP

quadrics of corank 1

Countable or continuous families of

dimension 1!

Wild

∀Λ K-algebra of finite dimension, Mod(Λ) ↪→ CM(X).
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Representation type of curves

Countable

Finite

Degree d ≤ 2
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Representation type of curves

Tame

Wild

Degree d ≥ 3
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Representation type of curves

Drozd-Greuel CM type of curves

Finite i� rational normal curve

Countable i� pg = 0 with ODP

Tame i� pg = 1 (perhaps with ODP)

Wild i� pg ≥ 2 or more singular than ODP
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CM-representation type of ACM varieties

Theorem

Let X ⊂ PN be a closed integral subscheme, n = dim(X) > 0. Assume:

K is algebraically closed;

X is not a cone;

OX ∈ CM(X) i.e. X is ACM;

X is not one of the 9 finite or tame cases we already met.

Then X is of wild CM type.
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Enough to be wild

Rep(Ks) ↪→ CM(X), ∃s ≥ 3

1 �iver Ks with 2 vertexes and s arrows

◦◦ ◦

2 Condition (?):

find simple E ⊥ F ∈ CM(X) with

dimK Ext
1

X (E ,F) = s ≥ 3.
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Linear section Y ⊂ X of dimension m = n− c

Key lemma. Set dim(Y) = m > 0.

1 E ∈ Ur(Y) rank-r Ulrich sheaf E ∈ CM(Y) with R-linear resolution.

2 U(Y) category of Ulrich sheaves on Y .

Ωc : U(Y) ↪→ CM(X)

c-th stable syzygy functor of E as K[X ]-module.

3 Stable category CM(X) kills morphisms through free modules.

4 Recover E∗(c) as quotient of Ωc(E)∗ by elements of degree ≤ 1− c.

5 Need KY (m− 1) e�ective, equivalent to positive sectional genus.
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Minimal degree d = N − n + 1

Warm up: del Pezzo-Bertini

X not a cone⇒ X smooth.

X = v2(P2) or X = S(~a) or a quadric.

E = OX (H − F ) and F = OX ((d − 1)F ) give (?). X strictly Ulrich wild.

Except for quadrics, v2(P2), S(1, 2), S(1, 3) and S(2, 2).

Tame cases

Use derived categories for S(1, 3) and S(2, 2).

Work in progress for singular cases e.g. S(0, 3).
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More on tame cases

With Francesco Malaspina: CM(X) for S(1, 3) and S(2, 2).

1 Only Ulrich bundles move. Finitely many more.

2 Indecomposables in Ur(X) are a P1
for r even, a point for r odd.

3 Use derived π∗π∗E → E with π : X → P1
to unwind E .
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“High” degree d ≥ N − n + 3

Reduce to curves, m = 1

pg(Y) ≥ 2.

Take F and E generic in the compactified Jacobian.

If c1(E) = c1(F) = d + g − 1 then E ⊥ F ∈ U1(Y).

Use extensions to reach E ′ ⊥ F ′ ∈ U2(Y) with (?).
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Almost minimal degree d = N − n + 2

Reduce to del Pezzo surfaces, m = 2

Y may be non-normal.

Normal Y : E ⊥ F ∈ U2(Y) with (?).

Easy by Serre construction from d + 2 points.

Beware U1(Y) = ∅ e.g. if Y is a cubic with E6 singularity.

If Y is not normal then Ȳ has minimal degre.
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Non normal del Pezzo surfaces

E ⊥ F image of Ulrich line bundles on Ȳ via π : Ȳ → Y .

E.g. Y cubic surface with a line L of singularities

x3

1
+ x2

0
x2 − x0x1x3 =

∣∣∣∣ x0 x1 0

x1 x3 −x0

0 x2 −x1

∣∣∣∣

A′
L

B′
p0

p1

p2

p3

Use A′ and B′ projected from Ȳ to compute Ext1

Y (E ,F) and deduce (?).
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Y (E ,F) and deduce (?).

25 / 27



Non normal del Pezzo surfaces

E ⊥ F image of Ulrich line bundles on Ȳ via π : Ȳ → Y .
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�estions

1 If X not ACM?

2 Cones? S(0, 3)?

3 Reducible? Non reduced?

4 ACM of rank r bounded on smooth X?

5 �asiprojective?

6 Moduli?

7 Classify rigid ACM sheaves.

8 Remove Ulrich sheaves. Does X remain wild?
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�estions – extended version

1 If X is not ACM? Abelian surfaces are strictly Ulrich wild (Beauville).

2 Whan happens for cones? Most are wild. S(0, 3) should be tame.

3 Whan happens for reducible or non-reduced varieties?

I Some reducible varieties of minimal degree could be tame.

I Representation type should go “up” for special fibres.

4 X smooth and r fixed. Is the family of ACM sheaves of rank r bounded?

5 Non-projective varieties? Elliptic singularities are tame.

6 Can we define moduli of ACM sheaves? Typically unstable.

7 Classify rigid ACM sheaves on (some) CM-wild varieties.

I Done for v3(P2) and v2(P3) (cf. Iyama-Yoshino).

I Transitivity of the braid group action on rigid objects.

8 X projective, not one of the CM-finite or tame cases.

Is X (strictly) Ulrich wild?

If we remove Ulrich sheaves, does X remain CM-wild?
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