Hyperkahler fourfolds and Kummer surfaces

joint work with: A. Iliev, M. Kapustka, K. Ranestad

24th May 2016

joint work with: A. Iliev, M. Kapustka, K. Ranestad Hyperkahler fourfolds and Kummer surfaces

F 4 3 F 4

In Known constructions of projective hyper-Kähler (HK) manifolds

- 2 Double EPW cubes: new projective HK sixfolds

Singular double EPW cubes

- HK fourfolds from singular double EPW cubes
- Connections to Verra threefolds and cubic fourfolds containing a plane
- New construction of Kummer surfaces

K3 surfaces

< 回 > < 回 > < 回 >

э

K3 surfaces

 Projective models of K3 surfaces of degree < 22 are well known (lskovskikh [I], Mukai [M]).

/⊒ > < ∃ >

K3 surfaces

- Projective models of K3 surfaces of degree ≤ 22 are well known (Iskovskikh [I], Mukai [M]).
- Mukai described a generic polarised K3 surfaces of degree 24, 30, 34, 38.

- **→** → **→**

K3 surfaces

- Projective models of K3 surfaces of degree ≤ 22 are well known (Iskovskikh [I], Mukai [M]).
- Mukai described a generic polarised K3 surfaces of degree 24, 30, 34, 38.
- Kondo, Gritsenko, Hukek, Sankaran proved that the moduli space M_{2d} of polarised K3 surfaces of degree 2d with d > 61 is of general type.

The table of projective HK

 Let (X, L) be a polarised HK manifolds of dimension 2n. Then L²ⁿ = c(q(L)ⁿ) where c is a constant called the Fujiki constant and q(.) a quadratic form called the Beauville–Bogomolov form (for HK of K3^[n] type c = (2n)!/n^[2n]).

通 ト イ ヨ ト イ ヨ ト

The table of projective HK

- Let (X, L) be a polarised HK manifolds of dimension 2n. Then L²ⁿ = c(q(L)ⁿ) where c is a constant called the Fujiki constant and q(.) a quadratic form called the Beauville–Bogomolov form (for HK of K3^[n] type c = (2n)!/(n²).
- The list of all known complete families of projective HK manifolds of dimension 2n > 2:

$\dim \setminus q$	2	4	6		22		38
8	[LLSV]						
6		[IKKR]					
4	[O'G],[IM]		[BD]		[DV]		[IR]
2	$X \xrightarrow{2:1} \mathbb{P}^2$	$X_4 \subset \mathbb{P}^3$	<i>X</i> _{2,3}	[M],[I]	[M]	4×[M]	[M]

/□ ▶ < 글 ▶ < 글

projective hyper-Kähler

$\dim \setminus q$	2	4	6	22	38
8	[LLSV]				
6		[IKKR]			
4	[O'G],[IM]		[BD]	[DV]	[IR]

同 ト イ ヨ ト イ ヨ ト

projective hyper-Kähler

$\dim \setminus q$	2	4	6	22	38
8	[LLSV]				
6		[IKKR]			
4	[O'G],[IM]		[BD]	[DV]	[IR]

• [O'G] O'Grady: double EPW sextics,

同 ト イ ヨ ト イ ヨ ト

projective hyper-Kähler

$\dim \setminus q$	2	4	6	22	38
8	[LLSV]				
6		[IKKR]			
4	[O'G],[IM]		[BD]	[DV]	[IR]

- [O'G] O'Grady: double EPW sextics,
- [IM] Iliev, Manivel: from Hilbert scheme of conics on linear sections of $Q \cap G(2,5) \subset \mathbb{P}^9$,

/□ ▶ < 글 ▶ < 글

projective hyper-Kähler

$dim \setminus q$	2	4	6	22	38
8	[LLSV]				
6		[IKKR]			
4	[O'G],[IM]		[BD]	[DV]	[IR]

- [O'G] O'Grady: double EPW sextics,
- [IM] Iliev, Manivel: from Hilbert scheme of conics on linear sections of Q ∩ G(2,5) ⊂ P⁹,
- [BD] Beauville, Donagi: Hilbert scheme of lines on a cubic $X_3 \subset \mathbb{P}^5$,

伺 ト イ ヨ ト イ ヨ ト

projective hyper-Kähler

$dim \setminus q$	2	4	6	22	38
8	[LLSV]				
6		[IKKR]			
4	[O'G],[IM]		[BD]	[DV]	[IR]

- [O'G] O'Grady: double EPW sextics,
- [IM] Iliev, Manivel: from Hilbert scheme of conics on linear sections of Q ∩ G(2,5) ⊂ P⁹,
- [BD] Beauville, Donagi: Hilbert scheme of lines on a cubic $X_3 \subset \mathbb{P}^5$,
- [DV] Debarre, Voisin: zero locus of a section of a vector bundle on G(6, 10),

@▶ ◀ ⋽ ▶ ◀ ⋽

projective hyper-Kähler

$dim \setminus q$	2	4	6	22	38
8	[LLSV]				
6		[IKKR]			
4	[O'G],[IM]		[BD]	[DV]	[IR]

- [O'G] O'Grady: double EPW sextics,
- [IM] Iliev, Manivel: from Hilbert scheme of conics on linear sections of Q ∩ G(2,5) ⊂ P⁹,
- [BD] Beauville, Donagi: Hilbert scheme of lines on a cubic $X_3 \subset \mathbb{P}^5$,
- [DV] Debarre, Voisin: zero locus of a section of a vector bundle on G(6, 10),
- [IR] Iliev, Ranestad: variety of sum of power $VSP(X_3, 10)$,

伺 ト イ ヨ ト イ ヨ ト

projective hyper-Kähler

$\dim \setminus q$	2	4	6	22	38
8	[LLSV]				
6		[IKKR]			
4	[O'G],[IM]		[BD]	[DV]	[IR]

- [O'G] O'Grady: double EPW sextics,
- [IM] Iliev, Manivel: from Hilbert scheme of conics on linear sections of Q ∩ G(2,5) ⊂ P⁹,
- [BD] Beauville, Donagi: Hilbert scheme of lines on a cubic $X_3 \subset \mathbb{P}^5$,
- [DV] Debarre, Voisin: zero locus of a section of a vector bundle on G(6, 10),
- [IR] Iliev, Ranestad: variety of sum of power $VSP(X_3, 10)$,
- [LLSV] Lehn, Lehn, Sorger, van Straten: from Hilbert scheme of twisted cubics on $X_3 \subset \mathbb{P}^5$.

In this talk

$\dim \setminus q$	2	4	6		22		38
8	[LLSV]						
6	$?\in \mathbb{P}^9$	[IKKR]					
4	[O'G],[IM]	$?\in \mathbb{P}^9$	[BD]		[DV]		[IR]
2	$X \xrightarrow{2:1} \mathbb{P}^2$	$X_4 \subset \mathbb{P}^3$	<i>X</i> _{2,3}	[M],[I]	[M]	4×[M]	[M]

- 4 同 6 4 回 6 4 回 6

э

In this talk

$\dim \langle q \rangle$	2	4	6		22		38
8	[LLSV]						
6	$?\in \mathbb{P}^9$	[IKKR]					
4	[O'G],[IM]	$?\in \mathbb{P}^9$	[BD]		[DV]		[IR]
2	$X \xrightarrow{2:1} \mathbb{P}^2$	$X_4 \subset \mathbb{P}^3$	<i>X</i> _{2,3}	[M],[I]	[M]	4×[M]	[M]

• The construction of double EPW cubes.

同 ト イ ヨ ト イ ヨ ト

In this talk

$\dim \setminus q$	2	4	6		22		38
8	[LLSV]						
6	$?\in \mathbb{P}^9$	[IKKR]					
4	[O'G],[IM]	$?\in \mathbb{P}^9$	[BD]		[DV]		[IR]
2	$X \xrightarrow{2:1} \mathbb{P}^2$	$X_4 \subset \mathbb{P}^3$	<i>X</i> _{2,3}	[M],[I]	[M]	4×[M]	[M]

- The construction of double EPW cubes.
- Degenerated double EPW cubes and special HK 4-folds Z with q = 4.

/□ ▶ < 글 ▶ < 글

In this talk

$dim \setminus q$	2	4	6		22		38
8	[LLSV]						
6	$?\in \mathbb{P}^9$	[IKKR]					
4	[O'G],[IM]	$?\in \mathbb{P}^9$	[BD]		[DV]		[IR]
2	$X \xrightarrow{2:1} \mathbb{P}^2$	$X_4 \subset \mathbb{P}^3$	<i>X</i> _{2,3}	[M],[I]	[M]	4×[M]	[M]

- The construction of double EPW cubes.
- Degenerated double EPW cubes and special HK 4-folds Z with q = 4.
- Relations with cubics containing a plane and with Verra threefolds.

/□ ▶ < 글 ▶ < 글

In this talk

$dim \setminus q$	2	4	6		22		38
8	[LLSV]						
6	$?\in \mathbb{P}^9$	[IKKR]					
4	[O'G],[IM]	$?\in \mathbb{P}^9$	[BD]		[DV]		[IR]
2	$X \xrightarrow{2:1} \mathbb{P}^2$	$X_4 \subset \mathbb{P}^3$	<i>X</i> _{2,3}	[M],[I]	[M]	4×[M]	[M]

- The construction of double EPW cubes.
- Degenerated double EPW cubes and special HK 4-folds Z with q = 4.
- Relations with cubics containing a plane and with Verra threefolds.
- Constructions of Kummer quartic surfaces.

伺 ト イ ヨ ト イ ヨ

EPW cubes

• Let $V \simeq \mathbb{C}^6$ and let $\eta: \wedge^3 V \times \wedge^3 V \to \mathbb{C}$ be induced by the wedge product.

同 ト イ ヨ ト イ ヨ ト

EPW cubes

- Let $V \simeq \mathbb{C}^6$ and let $\eta: \wedge^3 V \times \wedge^3 V \to \mathbb{C}$ be induced by the wedge product.
- Denote $G(3, V) \subset P(\wedge^3 V)$ the Grassmanian of 3 spaces in V.

伺下 イヨト イヨト

EPW cubes

- Let $V \simeq \mathbb{C}^6$ and let $\eta: \wedge^3 V \times \wedge^3 V \to \mathbb{C}$ be induced by the wedge product.
- Denote $G(3, V) \subset P(\wedge^3 V)$ the Grassmanian of 3 spaces in V.
- Let P(T_p) be the embedded tangent space to G(3, V) ⊂ P(∧³V) at p ∈ G(3, V).

伺 ト イヨト イヨト

EPW cubes

- Let $V \simeq \mathbb{C}^6$ and let $\eta: \wedge^3 V \times \wedge^3 V \to \mathbb{C}$ be induced by the wedge product.
- Denote $G(3, V) \subset P(\wedge^3 V)$ the Grassmanian of 3 spaces in V.
- Let $P(T_p)$ be the embedded tangent space to $G(3, V) \subset P(\wedge^3 V)$ at $p \in G(3, V)$.
- For $A \in LG_\eta(10, \wedge^3 V)$ consider the set

 $D_A^i = \{p \in G(3, V) \mid \dim(T_p \cap A)) \geq i\}.$

伺 ト イ ヨ ト イ ヨ ト

EPW cubes

- Let $V \simeq \mathbb{C}^6$ and let $\eta: \wedge^3 V \times \wedge^3 V \to \mathbb{C}$ be induced by the wedge product.
- Denote $G(3, V) \subset P(\wedge^3 V)$ the Grassmanian of 3 spaces in V.
- Let $P(T_p)$ be the embedded tangent space to $G(3, V) \subset P(\wedge^3 V)$ at $p \in G(3, V)$.
- For $A \in LG_\eta(10, \wedge^3 V)$ consider the set

$$D_A^i = \{ p \in G(3, V) \mid \dim(T_p \cap A) \} \geq i \}.$$

< 同 > < 回 > < 回 >

 For general A the variety D²_A ⊂ G(3, V) has dimension 6 and is singular along D³_A we call it an EPW cube.

double EPW cubes

Theorem (IKKR)

For a general $A \in LG_{\eta}(10, \wedge^{3}V)$ there exists a double cover $X_{A} \xrightarrow{2:1} D_{A}^{2}$ ramified along D_{A}^{3} being a HK sixfold with Beauville degree q = 4 (divisibility 2).

伺 ト イヨト イヨト

double EPW cubes

Theorem (IKKR)

For a general $A \in LG_{\eta}(10, \wedge^{3}V)$ there exists a double cover $X_{A} \xrightarrow{2:1} D_{A}^{2}$ ramified along D_{A}^{3} being a HK sixfold with Beauville degree q = 4 (divisibility 2). Moving A we obtain a complete 20 dimensional family of such manifolds.

伺 ト イヨト イヨト

double EPW cubes

Theorem (IKKR)

For a general $A \in LG_{\eta}(10, \wedge^{3}V)$ there exists a double cover $X_{A} \xrightarrow{2:1} D_{A}^{2}$ ramified along D_{A}^{3} being a HK sixfold with Beauville degree q = 4 (divisibility 2). Moving A we obtain a complete 20 dimensional family of such manifolds.

• From $A \in LG_{\eta}(10, \wedge^{3}V)$ we can construct another HK a double EPW sextic.

double EPW cubes

Theorem (IKKR)

For a general $A \in LG_{\eta}(10, \wedge^{3}V)$ there exists a double cover $X_{A} \xrightarrow{2:1} D_{A}^{2}$ ramified along D_{A}^{3} being a HK sixfold with Beauville degree q = 4 (divisibility 2). Moving A we obtain a complete 20 dimensional family of such manifolds.

• From $A \in LG_{\eta}(10, \wedge^{3}V)$ we can construct another HK a double EPW sextic. Let

$$B_A^i = \{ [v] \in P(V) | \operatorname{dim}((v \wedge \bigwedge^2 V) \cap A) \geq i \}.$$

伺下 イヨト イヨト

 $B^1_A \subset \mathbb{P}^5$ is a sextic singular along the surface $B^2_A.$

double EPW cubes

Theorem (IKKR)

For a general $A \in LG_{\eta}(10, \wedge^{3}V)$ there exists a double cover $X_{A} \xrightarrow{2:1} D_{A}^{2}$ ramified along D_{A}^{3} being a HK sixfold with Beauville degree q = 4 (divisibility 2). Moving A we obtain a complete 20 dimensional family of such manifolds.

• From $A \in LG_{\eta}(10, \wedge^{3}V)$ we can construct another HK a double EPW sextic. Let

$$B_A^i = \{ [v] \in P(V) | \dim((v \land \bigwedge^2 V) \cap A) \ge i \}.$$

 $B^1_A \subset \mathbb{P}^5$ is a sextic singular along the surface $B^2_A.$

• O'Grady: there exists a double cover of B_A^1 branched along B_A^2 being a projective HK fourfold with q = 2.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

Degenerated EPW cubes

Let A ∈ LG(10, ∧³V) be such that P(A) ∩ G(3, V) = {p} and the intersection is transversal.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pla New construction of Kummer surfaces

Degenerated EPW cubes

- Let A ∈ LG(10, ∧³V) be such that P(A) ∩ G(3, V) = {p} and the intersection is transversal.
- The double EPW cube X_A constructed from A is singular.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Degenerated EPW cubes

- Let A ∈ LG(10, ∧³V) be such that P(A) ∩ G(3, V) = {p} and the intersection is transversal.
- The double EPW cube X_A constructed from A is singular.

Proposition (IKKR)

Let $A \in LG(10, \wedge^3 V)$ with $P(A) \cap G(3, V) = \{p\}$ transversal. Then $Z_A := Sing(X_A)$ is a polarized HK fourfold with q = 4.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

- 4 同 ト 4 ヨ ト 4 ヨ ト

Degenerated EPW cubes

- Let A ∈ LG(10, ∧³V) be such that P(A) ∩ G(3, V) = {p} and the intersection is transversal.
- The double EPW cube X_A constructed from A is singular.

Proposition (IKKR)

Let $A \in LG(10, \wedge^{3}V)$ with $P(A) \cap G(3, V) = \{p\}$ transversal. Then $Z_{A} := Sing(X_{A})$ is a polarized HK fourfold with q = 4. We obtain by moving A a 19-dimensional family of HK fourfolds with q = 4.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

Sketch of Proof

P(T_p) ∩ G(3, V) ⊂ P(∧³V) is isomorphic to a cone C_p ⊂ P⁹ with vertex p over the Segre P² × P² ⊂ P⁸.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

Sketch of Proof

P(T_p) ∩ G(3, V) ⊂ P(∧³V) is isomorphic to a cone C_p ⊂ P⁹ with vertex p over the Segre P² × P² ⊂ P⁸.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Sketch of Proof

P(T_p) ∩ G(3, V) ⊂ P(∧³V) is isomorphic to a cone C_p ⊂ P⁹ with vertex p over the Segre P² × P² ⊂ P⁸.

• $P(T_p) \cap D_A^3$ is the singular locus of $Y_A = D_A^2 \cap P(T_p)$ and $Z_A \to Y_A$ is a double cover branched along this surface.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

・ 同 ト ・ ヨ ト ・ ヨ ト

properties of Z_A

• The covering involution $Z_A \rightarrow Y_A$ is non-symplectic.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

properties of Z_A

- The covering involution $Z_A \rightarrow Y_A$ is non-symplectic.
- Ohashi and Wandel: there are four possible invariant rank lattices of non-symplectic involutions on HK 4-folds of rank 2:

$$U(2), U, < 2 > \oplus < -2 >$$

where < -2 > in the last lattice can have two possible divisibilities.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

伺 ト イヨト イヨ

properties of Z_A

- The covering involution $Z_A \rightarrow Y_A$ is non-symplectic.
- Ohashi and Wandel: there are four possible invariant rank lattices of non-symplectic involutions on HK 4-folds of rank 2:

$$U(2), U, < 2 > \oplus < -2 >$$

where <-2> in the last lattice can have two possible divisibilities.

• The last three involutions can be realized as involutions on the moduli space of sheaves on K3 surfaces.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

properties of Z_A

- The covering involution $Z_A \rightarrow Y_A$ is non-symplectic.
- Ohashi and Wandel: there are four possible invariant rank lattices of non-symplectic involutions on HK 4-folds of rank 2:

$$U(2), U, < 2 > \oplus < -2 >$$

where <-2> in the last lattice can have two possible divisibilities.

- The last three involutions can be realized as involutions on the moduli space of sheaves on K3 surfaces.
- The first one U(2) is the invariant lattice of $Z_A \rightarrow Y_A$.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

Z_A and the involutions on HK 4-folds

Proposition (IKKR)

Let X be a HK fourfold of type $K3^{[2]}$ that admits non-symplectic involution. Then X is either in the closure of the family of double EPW sextics or

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

Z_A and the involutions on HK 4-folds

Proposition (IKKR)

Let X be a HK fourfold of type $K3^{[2]}$ that admits non-symplectic involution. Then X is either in the closure of the family of double EPW sextics or in the closure of the family Z_A , or

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

Z_A and the involutions on HK 4-folds

Proposition (IKKR)

Let X be a HK fourfold of type $K3^{[2]}$ that admits non-symplectic involution. Then X is either in the closure of the family of double EPW sextics or

in the closure of the family Z_A , or

X is isomorphic to a moduli space of stable objects on a K3 surface and the automorphism is induced from an automorphism of the K3 surface.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

伺下 イヨト イヨト

related Verra threefolds

• Let again $A \in LG(10, \wedge^3 V)$ be such that

 $P(\wedge^3 V) \supset P(A) \cap G(3, V) = \{p\}$

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

related Verra threefolds

• Let again $A \in LG(10, \wedge^3 V)$ be such that

$$P(\wedge^{3}V) \supset P(A) \cap G(3,V) = \{p\}$$

and the intersection is transversal.

• Since A is Lagrangian it defines a quadric Q_A on $P(T_p)$ (A is a graph of a symmetric map $T_p \to T_p^{\vee}$).

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

伺 ト イ ヨ ト イ ヨ

related Verra threefolds

• Let again $A \in LG(10, \wedge^3 V)$ be such that

$$P(\wedge^{3}V) \supset P(A) \cap G(3, V) = \{p\}$$

- Since A is Lagrangian it defines a quadric Q_A on $P(T_p)$ (A is a graph of a symmetric map $T_p \to T_p^{\vee}$).
- $F_A = Q_A \cap C_p \subset P(T_p) = \mathbb{P}^9$ is a Fano fourfold of index 2.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

/□ ▶ < 글 ▶ < 글

related Verra threefolds

• Let again $A \in LG(10, \wedge^3 V)$ be such that

$$P(\wedge^{3}V) \supset P(A) \cap G(3,V) = \{p\}$$

- Since A is Lagrangian it defines a quadric Q_A on $P(T_p)$ (A is a graph of a symmetric map $T_p \to T_p^{\vee}$).
- $F_A = Q_A \cap C_p \subset P(T_p) = \mathbb{P}^9$ is a Fano fourfold of index 2.
- *F_A* is isomophic to a double cover of P² × P² ramified along a (2,2) divisor.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

イロト イポト イラト イラト

related Verra threefolds

• Let again $A \in LG(10, \wedge^3 V)$ be such that

$$P(\wedge^3 V) \supset P(A) \cap G(3, V) = \{p\}$$

- Since A is Lagrangian it defines a quadric Q_A on $P(T_p)$ (A is a graph of a symmetric map $T_p \to T_p^{\vee}$).
- $F_A = Q_A \cap C_p \subset P(T_p) = \mathbb{P}^9$ is a Fano fourfold of index 2.
- *F_A* is isomophic to a double cover of P² × P² ramified along a (2,2) divisor.
- (2,2) divisors in P² × P² studied by Verra in relation to the counterexample of the tetragonal conjecture about the injectivity of the Prym map.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

/□ ▶ < 글 ▶ < 글

HK from Verra threefold

Let (ℙ⁹ ⊃ C_p ∩ Q_A =) F_A → P² × ℙ² be a double cover branched along a (2,2) divisor.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

伺 ト イ ヨ ト イ ヨ

HK from Verra threefold

- Let (ℙ⁹ ⊃ C_p ∩ Q_A =) F_A → P² × ℙ² be a double cover branched along a (2,2) divisor.
- Consider (1, 1) conics in F_A ⊂ P⁹ i.e. conics that project to lines through P² ← F_A → P².

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

伺 ト イ ヨ ト イ ヨ

HK from Verra threefold

- Let (P⁹ ⊃ C_p ∩ Q_A =) F_A → P² × P² be a double cover branched along a (2,2) divisor.
- Consider (1, 1) conics in F_A ⊂ P⁹ i.e. conics that project to lines through P² ← F_A → P².
- Two lines l_1, l_2 in \mathbb{P}^2 define a quadric threefold cone

$$Q_{l_1,l_2} \subset C_p \subset \mathbb{P}^9.$$

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

・ 同 ト ・ ヨ ト ・ ヨ

HK from Verra threefold

- Let (P⁹ ⊃ C_p ∩ Q_A =) F_A → P² × P² be a double cover branched along a (2,2) divisor.
- Consider (1, 1) conics in F_A ⊂ P⁹ i.e. conics that project to lines through P² ← F_A → P².
- Two lines l_1, l_2 in \mathbb{P}^2 define a quadric threefold cone

$$Q_{l_1,l_2} \subset C_p \subset \mathbb{P}^9.$$

The Q_A ∩ Q_{l₁,l₂} ⊂ ℙ⁴ is a del Pezzo surface of degree 4. Such del Pezzo surface contains two pencils of (1, 1) conics.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

HK from Verra threefold

- Let (P⁹ ⊃ C_p ∩ Q_A =) F_A → P² × P² be a double cover branched along a (2,2) divisor.
- Consider (1, 1) conics in F_A ⊂ P⁹ i.e. conics that project to lines through P² ← F_A → P².
- Two lines l_1, l_2 in \mathbb{P}^2 define a quadric threefold cone

$$Q_{l_1,l_2} \subset C_p \subset \mathbb{P}^9.$$

The Q_A ∩ Q_{l₁,l₂} ⊂ ℙ⁴ is a del Pezzo surface of degree 4. Such del Pezzo surface contains two pencils of (1, 1) conics.

Theorem (IKKR)

The Hilbert scheme \mathcal{H}_A of (1,1) conics on F_A admits a \mathbb{P}^1 fibration with base Z_A being a HK fourfold with q = 4.

joint work with: A. Iliev, M. Kapustka, K. Ranestad Hyperkahler fourfolds and Kummer surfaces

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

Analogy of F_A with cubic containing a plane.

Let S be a general K3 surface of degree 2. There are three type of elements $\alpha_1, \alpha_2, \alpha_3$ in $Br(S)_2 = (\mathbb{Z}_2)^{21}$ giving rise to three different Hodge structures of the following manifolds:

/□ ▶ < 글 ▶ < 글

Analogy of F_A with cubic containing a plane.

Let S be a general K3 surface of degree 2. There are three type of elements $\alpha_1, \alpha_2, \alpha_3$ in $Br(S)_2 = (\mathbb{Z}_2)^{21}$ giving rise to three different Hodge structures of the following manifolds:

• a K3 complete intersection $X_{2,2,2} \subset \mathbb{P}^5$ (for α_1),

伺 ト イヨ ト イヨ

Analogy of F_A with cubic containing a plane.

Let S be a general K3 surface of degree 2. There are three type of elements $\alpha_1, \alpha_2, \alpha_3$ in $Br(S)_2 = (\mathbb{Z}_2)^{21}$ giving rise to three different Hodge structures of the following manifolds:

- a K3 complete intersection $X_{2,2,2} \subset \mathbb{P}^5$ (for α_1),
- a cubic fourfold in $X_3 \subset \mathbb{P}^5$ containing a plain (for α_2),

・ 同 ト ・ ヨ ト ・ ヨ

Analogy of F_A with cubic containing a plane.

Let S be a general K3 surface of degree 2. There are three type of elements $\alpha_1, \alpha_2, \alpha_3$ in $Br(S)_2 = (\mathbb{Z}_2)^{21}$ giving rise to three different Hodge structures of the following manifolds:

- a K3 complete intersection $X_{2,2,2} \subset \mathbb{P}^5$ (for α_1),
- a cubic fourfold in $X_3 \subset \mathbb{P}^5$ containing a plain (for α_2),
- a double cover F_A of P² × P² branched along a Verra threefold (for α₃).

(人間) とうり くうり

Analogy of F_A with cubic containing a plane.

Let S be a general K3 surface of degree 2. There are three type of elements $\alpha_1, \alpha_2, \alpha_3$ in $Br(S)_2 = (\mathbb{Z}_2)^{21}$ giving rise to three different Hodge structures of the following manifolds:

- a K3 complete intersection $X_{2,2,2} \subset \mathbb{P}^5$ (for α_1),
- a cubic fourfold in $X_3 \subset \mathbb{P}^5$ containing a plain (for α_2),
- a double cover F_A of P² × P² branched along a Verra threefold (for α₃).

We consider after Yoshioka the moduli spaces $M(S, \alpha_i)$ of twisted sheaves on (S, α_i) for i = 1, 2, 3.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

伺下 イヨト イヨト

Analogy of F_A with cubic containing a plane.

• $M(S, \alpha_1)$ is isomorphic to the related K3 surface $X_{2,2,2} \subset \mathbb{P}^5$,

伺下 イラト イラト

Analogy of F_A with cubic containing a plane.

- $M(S, \alpha_1)$ is isomorphic to the related K3 surface $X_{2,2,2} \subset \mathbb{P}^5$,
- M(S, α₂) is isomorphic to the Hilbert scheme of lines on the corresponding X₃ ⊂ ℙ⁵ (Macri, Stelari [MS]).

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl. New construction of Kummer surfaces

/□ ▶ < 글 ▶ < 글

Analogy of F_A with cubic containing a plane.

- $M(S, \alpha_1)$ is isomorphic to the related K3 surface $X_{2,2,2} \subset \mathbb{P}^5$,
- *M*(*S*, α₂) is isomorphic to the Hilbert scheme of lines on the corresponding X₃ ⊂ ℙ⁵ (Macri, Stelari [MS]).

Proposition

 $M(S, \alpha_3)$ is isomorphic to the base of a natural \mathbb{P}^1 -fibration on the Hilbert scheme of (1, 1) conics on the corresponding double cover F_A of $\mathbb{P}^2 \times \mathbb{P}^2$ branched along a (2, 2) divisor.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analogy of F_A with cubic containing a plane.

- $M(S, \alpha_1)$ is isomorphic to the related K3 surface $X_{2,2,2} \subset \mathbb{P}^5$,
- *M*(*S*, α₂) is isomorphic to the Hilbert scheme of lines on the corresponding X₃ ⊂ ℙ⁵ (Macri, Stelari [MS]).

Proposition

 $M(S, \alpha_3)$ is isomorphic to the base of a natural \mathbb{P}^1 -fibration on the Hilbert scheme of (1, 1) conics on the corresponding double cover F_A of $\mathbb{P}^2 \times \mathbb{P}^2$ branched along a (2, 2) divisor.

Question

Is the double cover of $\mathbb{P}^2\times\mathbb{P}^2$ branched along a generic (2,2) divisor rational?

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

New construction of Kummer surfaces

There exists a quartic hypersurface ${\it K}_4 \subset \mathbb{P}^9$ such that the intersection

$$P(T_p) \supset T_p \cap D_A^2 = C_p \cap D_A^2 \subset G(3, V)$$

is isomorphic to the intersection $C_p \cap K_4 \subset \mathbb{P}^9$.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

New construction of Kummer surfaces

There exists a quartic hypersurface ${\cal K}_4 \subset \mathbb{P}^9$ such that the intersection

$$P(T_p) \supset T_p \cap D^2_A = C_p \cap D^2_A \subset G(3, V)$$

is isomorphic to the intersection $C_p \cap K_4 \subset \mathbb{P}^9$. From the two projections $\mathbb{P}^2 \leftarrow C_p \to \mathbb{P}^2$ we infer two fibrations

$$\mathbb{P}^2 \leftarrow Y_A \to \mathbb{P}^2$$

of quartic surfaces.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

New construction of Kummer surfaces

There exists a quartic hypersurface ${\it K}_4 \subset \mathbb{P}^9$ such that the intersection

$$P(T_p) \supset T_p \cap D^2_A = C_p \cap D^2_A \subset G(3, V)$$

is isomorphic to the intersection $C_p \cap K_4 \subset \mathbb{P}^9$. From the two projections $\mathbb{P}^2 \leftarrow C_p \to \mathbb{P}^2$ we infer two fibrations

$$\mathbb{P}^2 \leftarrow Y_A \to \mathbb{P}^2$$

of quartic surfaces.

Corollary

The Hilbert scheme of (1,1) conics on the threefold being the double cover of $\mathbb{P}^1 \times \mathbb{P}^2$ ramified along a (2,2) divisor admits a natural map with image being a quartic Kummer surface in \mathbb{P}^3 .

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

New construction of Kummer surfaces

There exists a quartic hypersurface ${\it K}_4 \subset \mathbb{P}^9$ such that the intersection

$$P(T_p) \supset T_p \cap D^2_A = C_p \cap D^2_A \subset G(3, V)$$

is isomorphic to the intersection $C_p \cap K_4 \subset \mathbb{P}^9$. From the two projections $\mathbb{P}^2 \leftarrow C_p \to \mathbb{P}^2$ we infer two fibrations

$$\mathbb{P}^2 \leftarrow Y_A \to \mathbb{P}^2$$

of quartic surfaces.

Corollary

The Hilbert scheme of (1,1) conics on the threefold being the double cover of $\mathbb{P}^1 \times \mathbb{P}^2$ ramified along a (2,2) divisor admits a natural map with image being a quartic Kummer surface in \mathbb{P}^3 . A generic Kummer surface can be obtained in this way.

HK fourfolds from singular double EPW cubes Connections to Verra threefolds and cubic fourfolds containing a pl New construction of Kummer surfaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- [IKKR] A. Iliev, G. Kapustka, M. Kapustka, K.Ranestad "EPW cubes" arXiv: arXiv:1505.02389
- [IKKR1] A. Iliev, G. Kapustka, M. Kapustka, K.Ranestad "Hyperkahler manifolds and Kummer surfaces" arXiv:1603.00403
- [MS] E. Macri, P. Stellari. "Fano varieties of cubic fourfolds containing a plane." Math. Ann., 354(3):1147?1176, 2012.
- [vG] B. van Geemen. "Some remarks on Brauer groups of K3 surfaces." Adv. Math., 197(1):222–247, 2005.
- [V] A. Verra. "The Prym map has degree two on plane sextics". In The Fano Confer- ence, pages 735–759. Univ. Torino, Turin, 2004.