Degenerations of Hilbert schemes of points

$\begin{array}{l} \mbox{Martin G. Gulbrandsen}^1 \\ \mbox{joint } w/\mbox{Lars Halle and Klaus Hulek} \end{array}$

¹University of Stavanger

MCPG 2016

• Hyperkähler manifolds as higher dimensional K3's: How do they degenerate?

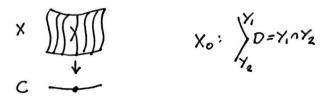
- Hyperkähler manifolds as higher dimensional K3's: How do they degenerate?
- Basic example: Semi-stable (symplectic?) degenerations of $Hilb^n(K3)$

- Hyperkähler manifolds as higher dimensional K3's: How do they degenerate?
- Basic example: Semi-stable (symplectic?) degenerations of $Hilb^n(K3)$
- Li–Wu construction: X → C semi-stable degeneration without triple points → improved version of Hilb^P(X/C)

- Hyperkähler manifolds as higher dimensional K3's: How do they degenerate?
- Basic example: Semi-stable (symplectic?) degenerations of Hilbⁿ(K3)
- Li–Wu construction: X → C semi-stable degeneration without triple points ~→ improved version of Hilb^P(X/C)
- Our aim:
 - apply Li–Wu to Hilbert scheme of points
 - in particular for K3 degenerations
 - make accessible by rephrasing as a GIT construction

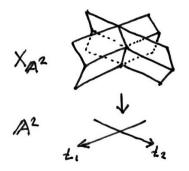
The curve degeneration $t = x_1 x_2$:

The curve degeneration $t = x_1 x_2$:



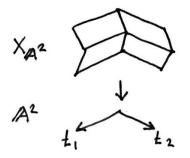
Impose singularityfobia:

describe the points in X without touching the nonsmooth point, but rather as orbits in a smooth family.



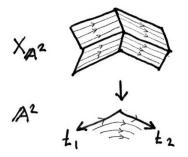
• Pull back X along product $\mathbb{A}^2 \to \mathbb{A}^1$: $t_1 t_2 = x_1 x_2$.

Gulbrandsen (UiS)

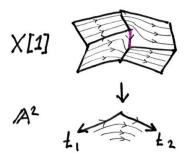


• Pull back X along product $\mathbb{A}^2 \to \mathbb{A}^1$: $t_1 t_2 = x_1 x_2$.

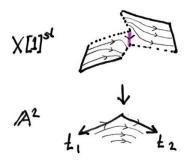
Gulbrandsen (UiS)



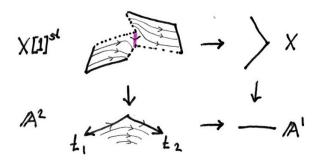
• Pull back X along product $\mathbb{A}^2 \to \mathbb{A}^1$: $t_1 t_2 = x_1 x_2$. With \mathbb{G}_m -action $(t_1, t_2) \mapsto (\lambda t_1, \lambda^{-1} t_2)$.



- Pull back X along product $\mathbb{A}^2 \to \mathbb{A}^1$: $t_1 t_2 = x_1 x_2$. With \mathbb{G}_m -action $(t_1, t_2) \mapsto (\lambda t_1, \lambda^{-1} t_2)$.
- Choose a small resolution X[1], e.g. blow up Weil divisor $x_1 = t_1 = 0$.



- Pull back X along product $\mathbb{A}^2 \to \mathbb{A}^1$: $t_1 t_2 = x_1 x_2$. With \mathbb{G}_m -action $(t_1, t_2) \mapsto (\lambda t_1, \lambda^{-1} t_2)$.
- Choose a small resolution X[1], e.g. blow up Weil divisor $x_1 = t_1 = 0$.
- Delete " Y_1 over the t_1 -axis" and " Y_2 over the t_2 -axis".



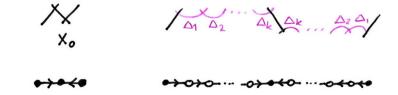
- Pull back X along product $\mathbb{A}^2 \to \mathbb{A}^1$: $t_1 t_2 = x_1 x_2$. With \mathbb{G}_m -action $(t_1, t_2) \mapsto (\lambda t_1, \lambda^{-1} t_2)$.
- Choose a small resolution X[1], e.g. blow up Weil divisor $x_1 = t_1 = 0$.
- Delete " Y_1 over the t_1 -axis" and " Y_2 over the t_2 -axis".
- X is the \mathbb{G}_m -orbit space of the smooth variety $X[1]^{\mathrm{st}} \subset X[1]$.

- Input:
 - semi-stable degeneration X/C without triple points $(C = \mathbb{A}^1)$
 - orientation of the dual graph $\Gamma(X_0)$

- Input:
 - semi-stable degeneration X/C without triple points ($C = \mathbb{A}^1$)
 - orientation of the dual graph $\Gamma(X_0)$
- Output: Deligne–Mumford stack $\mathfrak{I}^n_{X/C}$ such that
 - It is proper over C
 - It agrees with Hilbⁿ(X/C) over C \ {0}

The Li–Wu stack: degenerate fibre

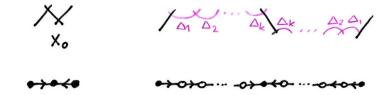
As a set: length *n* subscheme in an *expansion* of X_0 :



modulo \mathbb{G}_m^k (scale each Δ_i).

The Li–Wu stack: degenerate fibre

As a set: length *n* subscheme in an *expansion* of X_0 :

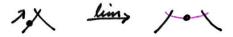


modulo \mathbb{G}_m^k (scale each Δ_i). Subject to a "stability condition":

- No singularities as supporting points
- No empty Δ_i

Basic limit mechanism: avoid singularities by growing Δ 's:

Basic limit mechanism: avoid singularities by growing Δ 's:



Families of expansions not entirely transparent: modelled on an explicitly constructed family X[k] over $C[k] = C \times_{\mathbb{A}^1} \mathbb{A}^{k+1}$.

Assume: $X \to C$ is projective and $\Gamma(X_0)$ has no odd cycles. Choose bipartite orientation.

Assume: $X \to C$ is projective and $\Gamma(X_0)$ has no odd cycles. Choose bipartite orientation.

Assume: $X \to C$ is projective and $\Gamma(X_0)$ has no odd cycles. Choose bipartite orientation.

Assume: $X \to C$ is projective and $\Gamma(X_0)$ has no odd cycles. Choose bipartite orientation.

Theorem (GHH)

 $X[n] \rightarrow C[n]$ is projective and for a suitable \mathbb{G}_m^n -linearization on $H = \operatorname{Hilb}^n(X[n]/C[n])$:

Assume: $X \to C$ is projective and $\Gamma(X_0)$ has no odd cycles. Choose bipartite orientation.

Theorem (GHH)

 $X[n] \rightarrow C[n]$ is projective and for a suitable \mathbb{G}_m^n -linearization on $H = \text{Hilb}^n(X[n]/C[n])$:

- Stability and semi-stability coincides
- Stability means no singularities and no empty Δ_i, but refined: zeros in the base C[n] dictate distribution of points among the components.

Assume: $X \to C$ is projective and $\Gamma(X_0)$ has no odd cycles. Choose bipartite orientation.

Theorem (GHH)

 $X[n] \rightarrow C[n]$ is projective and for a suitable \mathbb{G}_m^n -linearization on $H = \text{Hilb}^n(X[n]/C[n])$:

- Stability and semi-stability coincides
- Stability means no singularities and no empty Δ_i, but refined: zeros in the base C[n] dictate distribution of points among the components.
- The GIT quotient H^{st}/\mathbb{G}_m^n is the coarse moduli space of $\mathfrak{I}_{X/C}^n$.
- The Li–Wu stack $\mathfrak{I}^n_{X/C}$ is the global quotient $[H^{\mathrm{st}}/\mathbb{G}^n_m]$.

Properties of $\mathfrak{I}_{X/C}^n$

Work in progress! For $X \to C$ a degeneration of curves or surfaces, with bipartite orientation:

• $\mathfrak{I}^n_{X/C} \to C$ is *semi-stable*, in the stacky sense

Properties of $\mathfrak{I}_{X/C}^n$

Work in progress! For $X \to C$ a degeneration of curves or surfaces, with bipartite orientation:

- $\mathfrak{I}^n_{X/C} \to C$ is *semi-stable*, in the stacky sense
- K3 degenerations: for $X \to C$ a Kulikov model of type II, $\mathfrak{I}_{X/C}^n \to C$ is (stacky) *good* in the sense of Nagai.

Work in progress! For $X \to C$ a degeneration of curves or surfaces, with bipartite orientation:

- $\mathfrak{I}^n_{X/C} \to C$ is *semi-stable*, in the stacky sense
- K3 degenerations: for $X \to C$ a Kulikov model of type II, $\mathfrak{I}^n_{X/C} \to C$ is (stacky) good in the sense of Nagai.
- The dual Δ -complex of the degenerate fibre is the *n*'th symmetric power of the dual oriented graph of X_0
 - In particular: the dual graph Γ linear: its symmetric product Sⁿ(Γ) is a subdivision of an *n*-simplex.

The dual Δ -complex: 2 components, *n* points

 Γ with orientation:

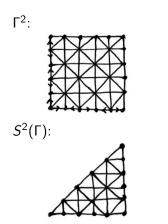
 Γ^n for $n = 2, 3, \ldots$

 $S^{n}(\Gamma)$ for n = 2, 3, ...:

An *n*-simplex — simplest possible type for Nagai's good degenerations of hyperkähler varieties.

The dual Δ -complex: *n* components, 2 points

 Γ with orientation:



Same combinatorics as Nagai's hand made examples.

Gulbrandsen (UiS)

Degenerations of $Hilb^n(X)$

The dual Δ -complex: 3 components, 3 points:

