Calabi-Yau manifolds in low codimension

Michał Kapustka

University of Stavanger

24th May 2016

joint work with: G. Kapustka; S. Coughlan, Ł. Gołębiowski and G. Kapustka.

Motivations

- General theory of Calabi-Yau manifolds
- Specific aims
- Structure theory in low codimension

${f 2}$ Calabi-Yau threefolds in ${\Bbb P}^6$

- Preliminaries
- First results
- Classification
- Higher degree constructions
- 3 Calabi-Yau threefolds in \mathbb{P}^7
 - Preliminary results
 - Classification results
 - Higher degree constructions

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Calabi-Yau – definition and questions

Definition

A Calabi-Yau threefold is a smooth complex projective threefold X satisfying:

1
$$K_X = 0$$

2
$$h^1(X, \mathcal{O}_X) = h^2(X, \mathcal{O}_X) = 0$$

Main questions and conjectures:

- Classification
- Mirror symmetry conjectures
- Web conjecture

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Specific questions

Problems:

• A huge majority of known families of Calabi-Yau threefolds are strictly related to toric constructions.

4 3 b

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Specific questions

Problems:

- A huge majority of known families of Calabi-Yau threefolds are strictly related to toric constructions.
- All major conjectures have been proven in that context.

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Specific questions

Problems:

- A huge majority of known families of Calabi-Yau threefolds are strictly related to toric constructions.
- All major conjectures have been proven in that context.
- There is almost no examples of non-toric Calabi-Yau threefolds for which mirror symmetry has been proven.

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Specific questions

Problems:

- A huge majority of known families of Calabi-Yau threefolds are strictly related to toric constructions.
- All major conjectures have been proven in that context.
- There is almost no examples of non-toric Calabi-Yau threefolds for which mirror symmetry has been proven.

Our main aims from the point of view of Calabi-Yau theory:

• Fill the need of new well described constructions that could help us see beyond the toric world.

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Specific questions

Problems:

- A huge majority of known families of Calabi-Yau threefolds are strictly related to toric constructions.
- All major conjectures have been proven in that context.
- There is almost no examples of non-toric Calabi-Yau threefolds for which mirror symmetry has been proven.

Our main aims from the point of view of Calabi-Yau theory:

- Fill the need of new well described constructions that could help us see beyond the toric world.
- Understand special phenomena specific to low codimensional Calabi-Yau manifolds.

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theorems

We consider the following types of structure theorems:

Local: Gorenstein local rings of small codimension

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theorems

- Local: Gorenstein local rings of small codimension
- Icologia Control Co

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theorems

- Local: Gorenstein local rings of small codimension
- Icologia Control Co

codim	Gorenstein ring	Subcanonical
	(Projectively normal)	
1	hypersurface	hypersurface
2		
3		
4		

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theorems

- Local: Gorenstein local rings of small codimension
- Icologia Control Co

codim	Gorenstein ring	Subcanonical
	(Projectively normal)	
1	hypersurface	hypersurface
2	complete intersection	zero locus of section of vector
		bundle (Serre's construction)
3		
4		

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theorems

- Local: Gorenstein local rings of small codimension
- Icologia Control Co

codim	Gorenstein ring	Subcanonical
	(Projectively normal)	
1	hypersurface	hypersurface
2	complete intersection	zero locus of section of vector
		bundle (Serre's construction)
3	Pfaffian of matrix	Pfaffian of vector bundle
	(Buchsbaum-Eisenbud)	(Okonek, Walter)
4		

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theorems

- Local: Gorenstein local rings of small codimension
- Icologia Control Co

codim	Gorenstein ring	Subcanonical
	(Projectively normal)	
1	hypersurface	hypersurface
2	complete intersection	zero locus of section of vector
		bundle (Serre's construction)
3	Pfaffian of matrix	Pfaffian of vector bundle
	(Buchsbaum-Eisenbud)	(Okonek, Walter)
4	Partial description: Reid	??

Motivations Calabi-Yau threefolds in ℙ⁶ Calabi-Yau threefolds in ℙ⁷ General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theory for Calabi-Yau threefolds

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theory for Calabi-Yau threefolds

We make the following observations:

• Calabi-Yau manifolds are always subcanonical.

General theory of Calabi-Yau manifolds Specific aims Structure theory in low codimension

Structure theory for Calabi-Yau threefolds

- Calabi-Yau manifolds are always subcanonical.
- Every Calabi-Yau threefold can be embedded into \mathbb{P}^7 .

- Calabi-Yau manifolds are always subcanonical.
- Every Calabi-Yau threefold can be embedded into $\mathbb{P}^7.$
- Calabi-Yau threefolds in ℙ⁵ are all complete intersections of types (1, 5), (2, 4) or (3, 3)

- Calabi-Yau manifolds are always subcanonical.
- Every Calabi-Yau threefold can be embedded into \mathbb{P}^7 .
- Calabi-Yau threefolds in ℙ⁵ are all complete intersections of types (1, 5), (2, 4) or (3, 3)
- $\bullet\,$ Calabi-Yau threefolds in \mathbb{P}^6 are the boundary case.

We make the following observations:

- Calabi-Yau manifolds are always subcanonical.
- Every Calabi-Yau threefold can be embedded into $\mathbb{P}^7.$
- Calabi-Yau threefolds in ℙ⁵ are all complete intersections of types (1, 5), (2, 4) or (3, 3)
- $\bullet\,$ Calabi-Yau threefolds in \mathbb{P}^6 are the boundary case.

Problem (Okonek)

Classify Calabi-Yau threefolds in \mathbb{P}^6 .

We make the following observations:

- Calabi-Yau manifolds are always subcanonical.
- Every Calabi-Yau threefold can be embedded into \mathbb{P}^7 .
- Calabi-Yau threefolds in \mathbb{P}^5 are all complete intersections of types $(1,5),\,(2,4)$ or (3,3)
- \bullet Calabi-Yau threefolds in \mathbb{P}^6 are the boundary case.

Problem (Okonek)

Classify Calabi-Yau threefolds in \mathbb{P}^6 .

Problem

Classify projectively normal Calabi-Yau threefolds in \mathbb{P}^7 .

・ロト ・同ト ・ヨト ・ヨト

Motivations Calabi-Yau threefolds in ℙ⁶ Calabi-Yau threefolds in ℙ⁷ Preliminaries First results Classification Higher degree constructions

Definition

A codimension 3 submanifold X is called Pfaffian if it is the maximal degeneracy locus of a skew-symmetric morphism of vector bundles of odd rank $E^*(-t) \xrightarrow{\varphi} E$, for some $t \in \mathbb{Z}$.

伺 ト く ヨ ト く ヨ ト

Preliminaries First results Classification Higher degree constructions

Definition

A codimension 3 submanifold X is called Pfaffian if it is the maximal degeneracy locus of a skew-symmetric morphism of vector bundles of odd rank $E^*(-t) \xrightarrow{\varphi} E$, for some $t \in \mathbb{Z}$.

With $s = c_1(E) + 2rt$ and rk(E) = 2r + 1 we then have:

$$0 o \mathcal{O}_{\mathbb{P}^n}(-2s-t) o E^*(-s-t) o E(-s) o \mathcal{I}_X o 0,$$

and $\omega_X = \mathcal{O}_X(t+2s-n-1)$.

伺 ト イ ヨ ト イ ヨ ト

Preliminaries First results Classification Higher degree constructions

Definition

A codimension 3 submanifold X is called Pfaffian if it is the maximal degeneracy locus of a skew-symmetric morphism of vector bundles of odd rank $E^*(-t) \xrightarrow{\varphi} E$, for some $t \in \mathbb{Z}$.

With $s = c_1(E) + 2rt$ and rk(E) = 2r + 1 we then have:

$$0 o \mathcal{O}_{\mathbb{P}^n}(-2s-t) o E^*(-s-t) o E(-s) o \mathcal{I}_X o 0,$$

and $\omega_X = \mathcal{O}_X(t+2s-n-1).$

Theorem

If *n* is not divisible by 4 then a locally Gorenstein codimension 3 submanifold of \mathbb{P}^{n+3} is Pfaffian if and only if it is sub-canonical.

イロト イポト イラト イラト

 $\begin{array}{c} \text{Motivations}\\ \textbf{Calabi-Yau threefolds in } \mathbb{P}^{\textbf{6}}\\ \text{Calabi-Yau threefolds in } \mathbb{P}^{7} \end{array}$

Preliminaries First results Classification Higher degree constructions

• For Calabi-Yau threefolds in \mathbb{P}^6 we may assume t = 1 and s = 3.

э

- 4 同 6 4 日 6 4 日 6

Motivations Calabi-Yau threefolds in P⁶ Calabi-Yau threefolds in P⁷

Preliminaries First results Classification Higher degree constructions

- For Calabi-Yau threefolds in \mathbb{P}^6 we may assume t = 1 and s = 3.
- Our classification is reduced to looking for vector bundles with s = 3 and enough maps $E^*(-1) \xrightarrow{\varphi} E$.

 $\begin{array}{c} & \text{Motivations}\\ \textbf{Calabi-Yau threefolds in } \mathbb{P}^6\\ \textbf{Calabi-Yau threefolds in } \mathbb{P}^7 \end{array} \qquad \begin{array}{c} \text{Preliminaries}\\ \text{First results}\\ \textbf{Classification}\\ \text{Higher degree constri$

- For Calabi-Yau threefolds in \mathbb{P}^6 we may assume t = 1 and s = 3.
- Our classification is reduced to looking for vector bundles with s = 3 and enough maps $E^*(-1) \xrightarrow{\varphi} E$.
- Schreyer, Walter: If $X \subset \mathbb{P}^6$ is a Calabi-Yau threefold then $X = Pf(\phi)$ for some $\phi : E^*(-1) \to E$, $a_i \in \mathbb{Z}$ and

$$E = Syz^1(HR(X)) \oplus \bigoplus_{i=1}^n \mathcal{O}(a_i).$$

 $\begin{array}{c} & \text{Motivations}\\ \textbf{Calabi-Yau threefolds in } \mathbb{P}^6\\ \text{Calabi-Yau threefolds in } \mathbb{P}^7 \end{array} \\ \begin{array}{c} \text{Preliminaries}\\ \text{First results}\\ \text{Classification}\\ \text{Higher degree constitution}\\ \end{array}$

- For Calabi-Yau threefolds in \mathbb{P}^6 we may assume t = 1 and s = 3.
- Our classification is reduced to looking for vector bundles with s = 3 and enough maps $E^*(-1) \xrightarrow{\varphi} E$.
- Schreyer, Walter: If $X \subset \mathbb{P}^6$ is a Calabi-Yau threefold then $X = Pf(\phi)$ for some $\phi : E^*(-1) \to E$, $a_i \in \mathbb{Z}$ and

$$E = Syz^1(HR(X)) \oplus \bigoplus_{i=1}^n \mathcal{O}(a_i).$$

Definition

The Hartshorne-Rao module of X is the module $HR(X) = \bigoplus_{k=1}^{N} H^{1}(\mathcal{I}_{X}(k)).$

 $\begin{array}{c} \text{Motivations}\\ \textbf{Calabi-Yau threefolds in } \mathbb{P}^{\textbf{6}}\\ \text{Calabi-Yau threefolds in } \mathbb{P}^{7} \end{array}$

Preliminaries First results Classification Higher degree constructions

We start our study by several general results on Calabi-Yau threefolds in \mathbb{P}^6 :

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminaries First results Classification Higher degree constructions

We start our study by several general results on Calabi-Yau threefolds in \mathbb{P}^6 :

Proposition

Let $X \subset \mathbb{P}^6$ be a smooth Calabi-Yau threefold; then X is linearly normal.

< 🗇 > < 🖃 >

Preliminaries First results Classification Higher degree constructions

We start our study by several general results on Calabi-Yau threefolds in \mathbb{P}^6 :

Proposition

Let $X \subset \mathbb{P}^6$ be a smooth Calabi-Yau threefold; then X is linearly normal.

Proposition

The degree d of a Calabi–Yau threefold $X \subset \mathbb{P}^6$, that is not contained in a hyperplane is bounded in the range $11 \leq d \leq 42$.

< 🗇 > < 🖃 >

Preliminaries First results Classification Higher degree constructions

We start our study by several general results on Calabi-Yau threefolds in \mathbb{P}^6 :

Proposition

Let $X \subset \mathbb{P}^6$ be a smooth Calabi-Yau threefold; then X is linearly normal.

Proposition

The degree d of a Calabi–Yau threefold $X \subset \mathbb{P}^6$, that is not contained in a hyperplane is bounded in the range $11 \leq d \leq 42$.

In particular there is a finite number of families of Calabi-Yau threefolds in $\mathbb{P}^6.$

Preliminaries First results Classification Higher degree constructions

degree	Vector bundle
12	$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
13	$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
14	$7\mathcal{O}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
15	$\Omega^1_{\mathbb{P}^6}(\overline{1})\oplus 3\mathcal{O}_{\mathbb{P}^6}$
16	${\sf ker}(\psi)$, where $\psi\colon 13\mathcal{\overline{O}}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$ is a general map
17	ker (ψ) , where $\psi\colon 16\mathcal{O}_{\mathbb{P}^6} o 3\mathcal{O}_{\mathbb{P}^6}(1)$ is in one
	of three families of maps

э.

Preliminaries First results Classification Higher degree constructions

degree	Vector bundle
12	$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
13	$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
14	$\mathcal{TO}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus \mathcal{O}_{\mathbb{P}^6}(1)$
15	$\Omega^1_{\mathbb{P}^6}(\overline{1})\oplus 3\mathcal{O}_{\mathbb{P}^6}$
16	$ker(\psi)$, where $\psi\colon 13\mathcal{O}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$ is a general map
17	ker (ψ) , where $\psi\colon 16\mathcal{O}_{\mathbb{P}^6} o 3\mathcal{O}_{\mathbb{P}^6}(1)$ is in one
	of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao module (trivial or with trivial multiplication)

□ > < = > <

Preliminaries First results Classification Higher degree constructions

degree	Vector bundle
12	$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
13	$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
14	$7\mathcal{O}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
15	$\Omega^1_{\mathbb{P}^6}(\overline{1})\oplus 3\mathcal{O}_{\mathbb{P}^6}$
16	${\sf ker}(\psi)$, where $\psi\colon 13\mathcal{O}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$ is a general map
17	ker (ψ) , where $\psi\colon 16\mathcal{O}_{\mathbb{P}^6} o 3\mathcal{O}_{\mathbb{P}^6}(1)$ is in one
	of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao module (trivial or with trivial multiplication)

□ > < = > <

Preliminaries First results Classification Higher degree constructions

degree	Vector bundle
12	$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
13	$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
14	$7\mathcal{O}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
15	$\Omega^1_{\mathbb{P}^6}(1)\oplus 3\mathcal{O}_{\mathbb{P}^6}$
16	${\sf ker}(\psi)$, where $\psi\colon 13\mathcal{O}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$ is a general map
17	ker (ψ) , where $\psi\colon 16\mathcal{O}_{\mathbb{P}^6} o 3\mathcal{O}_{\mathbb{P}^6}(1)$ is in one
	of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao module (trivial or with trivial multiplication); those contained in a quadric

Preliminaries First results Classification Higher degree constructions

degree	Vector bundle
12	$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
13	$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
14	$7\mathcal{O}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus\mathcal{O}_{\mathbb{P}^6}(1)$
15	$\Omega^1_{\mathbb{P}^6}(1)\oplus 3\mathcal{O}_{\mathbb{P}^6}$
16	${\sf ker}(\psi)$, where $\psi\colon 13\mathcal{\overline{O}}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$ is a general map
17	ker (ψ) , where $\psi\colon 16\mathcal{O}_{\mathbb{P}^6} o 3\mathcal{O}_{\mathbb{P}^6}(1)$ is in one
	of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao module (trivial or with trivial multiplication); those contained in a quadric ; and Calabi-Yau threefolds of degree \leq 14.

Preliminaries First results Classification Higher degree constructions

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the following way. The map $\psi: 16\mathcal{O}_{\mathbb{P}^6} \to 3\mathcal{O}_{\mathbb{P}^6}(1)$ is given by a 16×3 matrix of linear forms i.e. its columns span a $\mathbb{P}^{15} \subset \mathbb{P}^{20} \supset \mathbb{P}^2 \times \mathbb{P}^6$.

Preliminaries First results Classification Higher degree constructions

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the following way. The map $\psi: 16\mathcal{O}_{\mathbb{P}^6} \to 3\mathcal{O}_{\mathbb{P}^6}(1)$ is given by a 16×3 matrix of linear forms i.e. its columns span a $\mathbb{P}^{15} \subset \mathbb{P}^{20} \supset \mathbb{P}^2 \times \mathbb{P}^6$. The map ψ defines Calabi-Yau threefolds of degree 17 if its corresponding \mathbb{P}^{15} contains one of the following:

Motivations Calabi-Yau threefolds in ℙ⁶ Calabi-Yau threefolds in ℙ⁷ Preliminaries First results Classification **Higher degree constructions**

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the following way. The map $\psi: 16\mathcal{O}_{\mathbb{P}^6} \to 3\mathcal{O}_{\mathbb{P}^6}(1)$ is given by a 16×3 matrix of linear forms i.e. its columns span a $\mathbb{P}^{15} \subset \mathbb{P}^{20} \supset \mathbb{P}^2 \times \mathbb{P}^6$. The map ψ defines Calabi-Yau threefolds of degree 17 if its corresponding \mathbb{P}^{15} contains one of the following:

• the graph of a linear embedding $\mathbb{P}^2 \to \mathbb{P}^6$;

Preliminaries First results Classification **Higher degree constructions**

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the following way. The map $\psi: 16\mathcal{O}_{\mathbb{P}^6} \to 3\mathcal{O}_{\mathbb{P}^6}(1)$ is given by a 16×3 matrix of linear forms i.e. its columns span a $\mathbb{P}^{15} \subset \mathbb{P}^{20} \supset \mathbb{P}^2 \times \mathbb{P}^6$. The map ψ defines Calabi-Yau threefolds of degree 17 if its corresponding \mathbb{P}^{15} contains one of the following:

- $\ \, \bullet \ \, {\rm graph \ of \ a \ linear \ embedding \ } \mathbb{P}^2 \to \mathbb{P}^6;$
- 2 the graph of a 2-tuple Veronese embedding $\mathbb{P}^2 \to \mathbb{P}^6$;

Motivations Calabi-Yau threefolds in ℙ⁶ Calabi-Yau threefolds in ℙ⁷ Preliminaries First results Classification **Higher degree constructions**

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the following way. The map $\psi: 16\mathcal{O}_{\mathbb{P}^6} \to 3\mathcal{O}_{\mathbb{P}^6}(1)$ is given by a 16×3 matrix of linear forms i.e. its columns span a $\mathbb{P}^{15} \subset \mathbb{P}^{20} \supset \mathbb{P}^2 \times \mathbb{P}^6$. The map ψ defines Calabi-Yau threefolds of degree 17 if its corresponding \mathbb{P}^{15} contains one of the following:

- $\ \, \bullet \ \, {\rm graph \ of \ a \ linear \ embedding \ } \mathbb{P}^2 \to \mathbb{P}^6;$
- 2 the graph of a 2-tuple Veronese embedding $\mathbb{P}^2 \to \mathbb{P}^6$;
- Solution is the graph of a birational map $\mathbb{P}^2 \to \mathbb{P}^6$ defined by a system of cubics passing through one point.

Preliminaries First results Classification Higher degree constructions

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the following way. The map $\psi\colon 16\mathcal{O}_{\mathbb{P}^6}\to 3\mathcal{O}_{\mathbb{P}^6}(1)$ is given by a 16×3 matrix of linear forms i.e. its columns span a $\mathbb{P}^{15}\subset\mathbb{P}^{20}\supset\mathbb{P}^2\times\mathbb{P}^6$. The map ψ defines Calabi-Yau threefolds of degree 17 if its corresponding \mathbb{P}^{15} contains one of the following:

- $\ \, \bullet \ \, {\rm graph \ of \ a \ linear \ embedding \ } \mathbb{P}^2 \to \mathbb{P}^6;$
- 2 the graph of a 2-tuple Veronese embedding $\mathbb{P}^2 \to \mathbb{P}^6$;
- Solution is the graph of a birational map $\mathbb{P}^2 \to \mathbb{P}^6$ defined by a system of cubics passing through one point.

Proposition

The Calabi-Yau threefolds constructed in case 3 have Picard number \geq 2.

< ロ > < 同 > < 回 > < 回 >

Preliminaries First results Classification Higher degree constructions

Analogy with del Pezzo surfaces

Vector bundle for CY	Vector bundle for DP
$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$	$\mathcal{O}_{\mathbb{P}^5}(-1)\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$	$2\mathcal{O}_{\mathbb{P}^5}\oplus\mathcal{O}_{\mathbb{P}^5}(1)$
$\mathcal{TO}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus\mathcal{O}_{\mathbb{P}^6}(1)$	$5\mathcal{O}_{\mathbb{P}^5}$
$\Omega^1_{\mathbb{P}^6}(1)\oplus 3\mathcal{O}_{\mathbb{P}^6}$	$\Omega^1_{\mathbb{P}^5}(1)\oplus 2\mathcal{O}_{\mathbb{P}^5}$
ker (ψ) , ψ : 13 $\mathcal{O}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$	ker (ψ) , $ar{\psi}\colon 11\mathcal{O}_{\mathbb{P}^5} o 2\mathcal{O}_{\mathbb{P}^5}(1)$
general	general
ker (ψ) , $\psi \colon \overline{16\mathcal{O}_{\mathbb{P}^6}} o 3\mathcal{O}_{\mathbb{P}^6}(1)$	$ker(\psi),\ \psi\colon 14\mathcal{O}_{\mathbb{P}^5}\to3\mathcal{O}_{\mathbb{P}^5}(1)$
special	special
77	$ker(\psi)$, $\psi\colon 17\mathcal{O}_{\mathbb{P}^5} o 4\mathcal{O}_{\mathbb{P}^5}(1)$
	very special ??

伺 ト く ヨ ト く ヨ ト

э

Preliminaries First results Classification Higher degree constructions

Analogy with del Pezzo surfaces

Vector bundle for CY	Vector bundle for DP
$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$	$\mathcal{O}_{\mathbb{P}^5}(-1)\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$	$2\mathcal{O}_{\mathbb{P}^5}\oplus\mathcal{O}_{\mathbb{P}^5}(1)$
$\mathcal{TO}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus\mathcal{O}_{\mathbb{P}^6}(1)$	$5\mathcal{O}_{\mathbb{P}^5}$
$\Omega^1_{\mathbb{P}^6}(ar 1)\oplus 3\mathcal{O}_{\mathbb{P}^6}$	$\Omega^1_{\mathbb{P}^5}(1)\oplus 2\mathcal{O}_{\mathbb{P}^5}$
ker (ψ) , $\hat{\psi}$: 13 $\mathcal{O}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$	ker(ψ), $\hat{\psi} \colon 11\mathcal{O}_{\mathbb{P}^5} o 2\mathcal{O}_{\mathbb{P}^5}(1)$
general	general
ker (ψ) , $\psi \colon \overline{16\mathcal{O}_{\mathbb{P}^6}} o 3\mathcal{O}_{\mathbb{P}^6}(1)$	ker(ψ), $\psi \colon \overline{14}\mathcal{O}_{\mathbb{P}^5} o 3\mathcal{O}_{\mathbb{P}^5}(1)$
special	special
77	ker(ψ), $\psi \colon 17\mathcal{O}_{\mathbb{P}^5} o 4\mathcal{O}_{\mathbb{P}^5}(1)$
	very special ??

 $\deg(CY) = 9 + \deg(dP)$

伺 ト く ヨ ト く ヨ ト

э

Preliminaries First results Classification Higher degree constructions

Analogy with del Pezzo surfaces

Vector bundle for CY	Vector bundle for DP
$\mathcal{O}_{\mathbb{P}^6}\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$	$\mathcal{O}_{\mathbb{P}^5}(-1)\oplus 2\mathcal{O}_{\mathbb{P}^6}(1)$
$4\mathcal{O}_{\mathbb{P}^6}\oplus\mathcal{O}_{\mathbb{P}^6}(1)$	$2\mathcal{O}_{\mathbb{P}^5}\oplus\mathcal{O}_{\mathbb{P}^5}(1)$
$\mathcal{TO}_{\mathbb{P}^6}$ or $\Omega^1_{\mathbb{P}^6}(1)\oplus\mathcal{O}_{\mathbb{P}^6}(1)$	$5\mathcal{O}_{\mathbb{P}^5}$
$\Omega^1_{\mathbb{P}^6}(ar 1)\oplus 3\mathcal{O}_{\mathbb{P}^6}$	$\Omega^1_{\mathbb{P}^5}(1)\oplus 2\mathcal{O}_{\mathbb{P}^5}$
ker (ψ) , $\hat{\psi}$: 13 $\mathcal{O}_{\mathbb{P}^6} o 2\mathcal{O}_{\mathbb{P}^6}(1)$	ker(ψ), $\hat{\psi} \colon 11\mathcal{O}_{\mathbb{P}^5} o 2\mathcal{O}_{\mathbb{P}^5}(1)$
general	general
ker (ψ) , $\psi \colon \overline{16\mathcal{O}_{\mathbb{P}^6}} o 3\mathcal{O}_{\mathbb{P}^6}(1)$	ker(ψ), $\psi \colon \overline{14}\mathcal{O}_{\mathbb{P}^5} o 3\mathcal{O}_{\mathbb{P}^5}(1)$
special	special
77	ker(ψ), $\psi \colon 17\mathcal{O}_{\mathbb{P}^5} o 4\mathcal{O}_{\mathbb{P}^5}(1)$
	very special ??

 $\deg(CY) = 9 + \deg(dP)$

Using the analogy we can construct a canonical surface of degree 18 in \mathbb{P}^5

Preliminary results Classification results Higher degree constructions

Structure theorem in codimension 4

Let X be a codimension 4 projectively Gorenstein variety then the ideal \mathcal{I}_X admits a free resolution of the form:

$$0 \to P_4 \to P_3 \xrightarrow{M'} P_2 \xrightarrow{M} P_1 \xrightarrow{L} \mathcal{I}_X \to 0, \tag{1}$$

Preliminary results Classification results Higher degree constructions

Structure theorem in codimension 4

Let X be a codimension 4 projectively Gorenstein variety then the ideal \mathcal{I}_X admits a free resolution of the form:

$$0 \to P_4 \to P_3 \xrightarrow{M'} P_2 \xrightarrow{M} P_1 \xrightarrow{L} \mathcal{I}_X \to 0, \tag{1}$$

with M = (A, B) is a $(k + 1) \times 2k$ matrix with polynomial entries made of two blocks A, B satisfying $A(B^t) + B(A^t) = 0$ and $M' = \begin{pmatrix} B^t \\ A^t \end{pmatrix}$.

Preliminary results Classification results Higher degree constructions

Structure theorem in codimension 4

Let X be a codimension 4 projectively Gorenstein variety then the ideal \mathcal{I}_X admits a free resolution of the form:

$$0 \to P_4 \to P_3 \xrightarrow{M'} P_2 \xrightarrow{M} P_1 \xrightarrow{L} \mathcal{I}_X \to 0, \tag{1}$$

with M = (A, B) is a $(k + 1) \times 2k$ matrix with polynomial entries made of two blocks A, B satisfying $A(B^t) + B(A^t) = 0$ and $M' = \begin{pmatrix} B^t \\ A^t \end{pmatrix}$.

Theorem (Reid)

Conversely if M = (A, B) is a matrix as above for which the rank < k locus D_{k-1} satisfies codim $D_{k-1} \ge 4$ then there exists X projectively Gorenstein of codimension 4 with resolution (1).

Preliminary results Classification results Higher degree constructions

Finiteness and degree bound

Proposition

The dimension of the space of quadrics in the ideal of a projectively normal Calabi–Yau threefold X in \mathbb{P}^7 of degree d is 20 - d i.e. $h^0(\mathcal{I}_X(2)) = 20 - d$. Moreover, the ideal of $X \subset \mathbb{P}^7$ is generated by quintics.

Preliminary results Classification results Higher degree constructions

Finiteness and degree bound

Proposition

The dimension of the space of quadrics in the ideal of a projectively normal Calabi–Yau threefold X in \mathbb{P}^7 of degree d is 20 - d i.e. $h^0(\mathcal{I}_X(2)) = 20 - d$. Moreover, the ideal of $X \subset \mathbb{P}^7$ is generated by quintics.

The following degree bounds follow:

Proposition Let X be a nonsingular projectively normal Calabi–Yau 3-fold in \mathbb{P}^7 . The degree of X takes values between 14 and 20.

Preliminary results Classification results Higher degree constructions

Known constructions and classification

Deg.	$h^{1,1}$	h ^{1,2}	Description
14	2	86	$(2,4)$ type divisor in $\mathbb{P}^1 imes \mathbb{P}^3$
15	1	76	${\it G}(2,5)\cap {\it C}_3\cap {\it H}_1\cap {\it H}_1'$
16	1	65	X _{2,2,2,2}
17	1	55	$Mv = \bigwedge^3 M = 0$, bilinked on $X_{2,2,2}$ to \mathbb{P}^3
17	2	58	2×2 minors of a matrix with degrees $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$
17	2	54	rolling factors, codim 2 in cubic scroll
18	1	46	bilinked on $X_{2,2,3} \subset \mathbb{P}^7$ to F_2
18	1	45	bilinked on $X_{2,2,3} \subset \mathbb{P}^7$ to F_1
19	2	36	bilinked on Pf_{13} to F_2
19	2	37	bilinked on Pf_{13} to F_1
20	2	34	3×3 minors of 4×4 matrix with linear forms

э

∃ >

-

Preliminary results Classification results Higher degree constructions

Known constructions and classification

Deg.	$h^{1,1}$	h ^{1,2}	Description
14	2	86	$(2,4)$ type divisor in $\mathbb{P}^1 imes \mathbb{P}^3$
15	1	76	${\it G}(2,5)\cap {\it C}_3\cap {\it H}_1\cap {\it H}_1'$
16	1	65	X _{2,2,2,2}
17	1	55	$Mv = \bigwedge^3 M = 0$, bilinked on $X_{2,2,2}$ to \mathbb{P}^3
17	2	58	2×2 minors of a matrix with degrees $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$
17	2	54	rolling factors, codim 2 in cubic scroll
18	1	46	bilinked on $X_{2,2,3} \subset \mathbb{P}^7$ to F_2
18	1	45	bilinked on $X_{2,2,3} \subset \mathbb{P}^7$ to F_1
19	2	36	bilinked on Pf_{13} to F_2
19	2	37	bilinked on Pf_{13} to F_1
20	2	34	3×3 minors of 4×4 matrix with linear forms

э

∃ >

-

Preliminary results Classification results Higher degree constructions

Degree 19 Calabi-Yau threefolds in \mathbb{P}^7 .

Theorem

There exist two families of aCM Calabi–Yau threefolds of degree 19 in \mathbb{P}^7 both having Picard number 2 .

(b) (4) (2) (4)

Preliminary results Classification results Higher degree constructions

Degree 19 Calabi-Yau threefolds in \mathbb{P}^7 .

Theorem

There exist two families of aCM Calabi–Yau threefolds of degree 19 in \mathbb{P}^7 both having Picard number 2 .

For their construction we use unprojection and smoothing.

Preliminary results Classification results Higher degree constructions

Degree 19 Calabi-Yau threefolds in \mathbb{P}^7 .

Theorem

There exist two families of aCM Calabi–Yau threefolds of degree 19 in \mathbb{P}^7 both having Picard number 2 .

For their construction we use unprojection and smoothing.

• We start with the Segre embedding of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^8 .

Preliminary results Classification results Higher degree constructions

Degree 19 Calabi-Yau threefolds in \mathbb{P}^7 .

Theorem

There exist two families of aCM Calabi–Yau threefolds of degree 19 in \mathbb{P}^7 both having Picard number 2 .

For their construction we use unprojection and smoothing.

- We start with the Segre embedding of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^8 .
- Its intersection with a linear subspace \mathbb{P}^6 is a del Pezzo surface $S_6 \subset \mathbb{P}^6$.

Preliminary results Classification results Higher degree constructions

Degree 19 Calabi-Yau threefolds in \mathbb{P}^7 .

Theorem

There exist two families of aCM Calabi–Yau threefolds of degree 19 in \mathbb{P}^7 both having Picard number 2 .

For their construction we use unprojection and smoothing.

- We start with the Segre embedding of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^8 .
- Its intersection with a linear subspace \mathbb{P}^6 is a del Pezzo surface $S_6 \subset \mathbb{P}^6$.
- Let $Y_{13} \subset \mathbb{P}^6$ be a general (singular) Calabi-Yau threefold of degree 13 containing S_6 .

A (10) < (10) < (10) </p>

Preliminary results Classification results Higher degree constructions

The unprojection

Such a Y_{13} and S_6 are defined as degeneracy loci of matrices:

$$Y_{13}:\begin{pmatrix} A & B & C & D \\ z_{31} & z_{21} & z_{22} - z_{33} \\ & z_{11} & z_{12} \\ & & & z_{13} \end{pmatrix} \text{ and } S_6:\begin{pmatrix} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \\ z_{31} & z_{32} & z_{33} \end{pmatrix},$$

Preliminary results Classification results Higher degree constructions

The unprojection

Such a Y_{13} and S_6 are defined as degeneracy loci of matrices:

$$Y_{13}:\begin{pmatrix} A & B & C & D \\ z_{31} & z_{21} & z_{22} - z_{33} \\ & z_{11} & z_{12} \\ & & & z_{13} \end{pmatrix} \text{ and } S_6:\begin{pmatrix} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \\ z_{31} & z_{32} & z_{33} \end{pmatrix},$$

We can know perform a Kustin-Miller unprojection

Preliminary results Classification results Higher degree constructions

The unprojection

Such a Y_{13} and S_6 are defined as degeneracy loci of matrices:

$$Y_{13}:\begin{pmatrix} A & B & C & D \\ z_{31} & z_{21} & z_{22} - z_{33} \\ & z_{11} & z_{12} \\ & & & z_{13} \end{pmatrix} \text{ and } S_6:\begin{pmatrix} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \\ z_{31} & z_{32} & z_{33} \end{pmatrix},$$

We can know perform a Kustin-Miller unprojection

Proposition (Kustin-Miller)

There exists a Gorenstein variety $Z \subset \mathbb{P}^7$ singular in a point p such that the projection of Z from p is Y_{13} and the exceptional locus of the projection is S_6 .

Preliminary results Classification results Higher degree constructions

Smoothing

• In order to prove that Y_{13} may be smoothed in \mathbb{P}^7 we need to study the singularities of Y_{13} and Z.

Preliminary results Classification results Higher degree constructions

Smoothing

- In order to prove that Y_{13} may be smoothed in \mathbb{P}^7 we need to study the singularities of Y_{13} and Z.
- We then apply Namikawa's criteria for the smoothing of singularities on singular Calabi-Yau varieties.

Preliminary results Classification results Higher degree constructions

Smoothing

- In order to prove that Y_{13} may be smoothed in \mathbb{P}^7 we need to study the singularities of Y_{13} and Z.
- We then apply Namikawa's criteria for the smoothing of singularities on singular Calabi-Yau varieties.

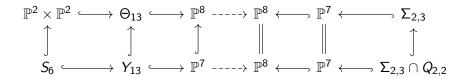
To understand the singularities we use the Cremona transformation based in $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$.

Preliminary results Classification results Higher degree constructions

Smoothing

- In order to prove that Y_{13} may be smoothed in \mathbb{P}^7 we need to study the singularities of Y_{13} and Z.
- We then apply Namikawa's criteria for the smoothing of singularities on singular Calabi-Yau varieties.

To understand the singularities we use the Cremona transformation based in $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$.



イロト (得) (ヨ) (ヨ) (ヨ) (の)

Preliminary results Classification results Higher degree constructions

Smoothing

- In order to prove that Y_{13} may be smoothed in \mathbb{P}^7 we need to study the singularities of Y_{13} and Z.
- We then apply Namikawa's criteria for the smoothing of singularities on singular Calabi-Yau varieties.

To understand the singularities we use the Cremona transformation based in $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$.

The image $\Sigma_{2,3}$ of Θ_{13} is a complete \mathbb{P}^6 section of the secant variety of $\mathbb{P}^2 \times \mathbb{P}^3$.

Preliminary results Classification results Higher degree constructions

References

- G. Kapustka, M. Kapustka, "Calabi–Yau threefolds in ℙ⁶." Ann. Mat. Pura Appl.
- G. Kapustka, M. Kapustka, "Del Pezzo surfaces in ℙ⁵ and Calabi–Yau threefolds in ℙ⁶." arXiv:1310.0774
- G. Kapustka, M. Kapustka, "Bilinkage in codimension 3 and canonical surfaces of degree 18 in ℙ⁵." Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
- S. Coughlan, Ł. Gołębiowski, G. Kapustka, M. Kapustka "Calabi-Yau threefolds in P⁷" preprint

Preliminary results Classification results Higher degree constructions

Thank you

Michał Kapustka Calabi–Yau manifolds in low codimension

< E