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General theory of Calabi-Yau manifolds
Specific aims
Structure theory in low codimension

Calabi-Yau – definition and questions

Definition

A Calabi-Yau threefold is a smooth complex projective threefold X
satisfying:

1 KX = 0

2 h1(X ,OX ) = h2(X ,OX ) = 0

Main questions and conjectures:

Classification

Mirror symmetry conjectures

Web conjecture
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Specific questions

Problems:

A huge majority of known families of Calabi-Yau threefolds
are strictly related to toric constructions.

All major conjectures have been proven in that context.

There is almost no examples of non-toric Calabi-Yau
threefolds for which mirror symmetry has been proven.

Our main aims from the point of view of Calabi-Yau theory:

Fill the need of new well described constructions that could
help us see beyond the toric world.

Understand special phenomena specific to low codimensional
Calabi-Yau manifolds.
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General theory of Calabi-Yau manifolds
Specific aims
Structure theory in low codimension

Structure theorems

We consider the following types of structure theorems:

1 Local: Gorenstein local rings of small codimension

2 Global: Subcanonical manifolds

codim Gorenstein ring
(Projectively normal)

Subcanonical

1 hypersurface hypersurface
2

complete intersection zero locus of section of vector
bundle (Serre’s construction)

3

Pfa�an of matrix
(Buchsbaum-Eisenbud)

Pfa�an of vector bundle
(Okonek, Walter)

4

Partial description: Reid ??
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General theory of Calabi-Yau manifolds
Specific aims
Structure theory in low codimension

Structure theory for Calabi-Yau threefolds

We make the following observations:

Calabi-Yau manifolds are always subcanonical.

Every Calabi-Yau threefold can be embedded into P7.

Calabi-Yau threefolds in P5 are all complete intersections of
types (1, 5), (2, 4) or (3, 3)

Calabi-Yau threefolds in P6 are the boundary case.

Problem (Okonek)

Classify Calabi-Yau threefolds in P6.

Problem

Classify projectively normal Calabi-Yau threefolds in P7.
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Preliminaries
First results
Classification
Higher degree constructions

Definition

A codimension 3 submanifold X is called Pfa�an if it is the
maximal degeneracy locus of a skew-symmetric morphism of vector
bundles of odd rank E ⇤(�t)

'�! E , for some t 2 Z.

With s = c1(E ) + 2rt and rk(E ) = 2r + 1 we then have:

0 ! OPn(�2s � t) ! E ⇤(�s � t) ! E (�s) ! IX ! 0,

and !X = OX (t + 2s � n � 1).

Theorem

If n is not divisible by 4 then a locally Gorenstein codimension 3
submanifold of Pn+3 is Pfa�an if and only if it is sub-canonical.
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For Calabi-Yau threefolds in P6 we may assume t = 1 and
s = 3.

Our classification is reduced to looking for vector bundles with
s = 3 and enough maps E ⇤(�1)

'�! E .

Schreyer, Walter: If X ⇢ P6 is a Calabi-Yau threefold then
X = Pf(�) for some � : E ⇤(�1) ! E , ai 2 Z and

E = Syz1(HR(X ))�
nM

i=1

O(ai ).

Definition

The Hartshorne-Rao module of X is the module
HR(X ) = �N

k=1H
1(IX (k)).
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We start our study by several general results on Calabi-Yau
threefolds in P6:

Proposition

Let X ⇢ P6 be a smooth Calabi-Yau threefold; then X is linearly
normal.

Proposition

The degree d of a Calabi–Yau threefold X ⇢ P6, that is not
contained in a hyperplane is bounded in the range 11  d  42.

In particular there is a finite number of families of Calabi-Yau
threefolds in P6.
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degree Vector bundle
12 OP6 � 2OP6(1)
13 4OP6 �OP6(1)
14 7OP6 or ⌦1

P6(1)�OP6(1)
15 ⌦1

P6(1)� 3OP6

16 ker( ), where  : 13OP6 ! 2OP6(1) is a general map
17 ker( ), where  : 16OP6 ! 3OP6(1) is in one

of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao
module (trivial or with trivial multiplication); those contained in a
quadric ; and Calabi-Yau threefolds of degree  14.
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Three types in degree 17

The bundles for threefold of degree 17 are constructed in the
following way. The map  : 16OP6 ! 3OP6(1) is given by a 16⇥ 3
matrix of linear forms i.e. its columns span a P15 ⇢ P20 � P2 ⇥ P6.

The map  defines Calabi-Yau threefolds of degree 17 if its
corresponding P15 contains one of the following:

1 the graph of a linear embedding P2 ! P6;

2 the graph of a 2-tuple Veronese embedding P2 ! P6;

3 the closure of the graph of a birational map P2 ! P6 defined
by a system of cubics passing through one point.

Proposition

The Calabi-Yau threefolds constructed in case 3 have Picard
number � 2.
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Analogy with del Pezzo surfaces

Vector bundle for CY Vector bundle for DP
OP6 � 2OP6(1) OP5(�1)� 2OP6(1)
4OP6 �OP6(1) 2OP5 �OP5(1)

7OP6 or ⌦1
P6(1)�OP6(1) 5OP5

⌦1
P6(1)� 3OP6 ⌦1

P5(1)� 2OP5

ker( ),  : 13OP6 ! 2OP6(1)
general

ker( ),  : 11OP5 ! 2OP5(1)
general

ker( ),  : 16OP6 ! 3OP6(1)
special

ker( ),  : 14OP5 ! 3OP5(1)
special

??
ker( ),  : 17OP5 ! 4OP5(1)

very special ??

deg(CY ) = 9 + deg(dP)

Using the analogy we can construct a canonical surface of degree
18 in P5
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Structure theorem in codimension 4

Let X be a codimension 4 projectively Gorenstein variety then the
ideal IX admits a free resolution of the form:

0 ! P4 ! P3
M0��! P2

M�! P1
L�! IX ! 0, (1)

with M = (A,B) is a (k + 1)⇥ 2k matrix with polynomial entries
made of two blocks A,B satisfying A(Bt) + B(At) = 0 and

M 0 =

✓
Bt

At

◆
.

Theorem (Reid)

Conversely if M = (A,B) is a matrix as above for which the rank
< k locus Dk�1 satisfies codimDk�1 � 4 then there exists X
projectively Gorenstein of codimension 4 with resolution (1).
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Finiteness and degree bound

Proposition

The dimension of the space of quadrics in the ideal of a
projectively normal Calabi–Yau threefold X in P7 of degree d is
20� d i.e. h0(IX (2)) = 20� d . Moreover, the ideal of X ⇢ P7 is
generated by quintics.

The following degree bounds follow:

Proposition

Let X be a nonsingular projectively normal Calabi–Yau 3-fold in
P7. The degree of X takes values between 14 and 20.
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Known constructions and classification

Deg. h1,1 h1,2 Description
14 2 86 (2, 4) type divisor in P1 ⇥ P3

15 1 76 G (2, 5) \ C3 \ H1 \ H 0
1

16 1 65 X2,2,2,2

17 1 55 Mv =
V3M = 0, bilinked on X2,2,2 to P3

17 2 58 2⇥ 2 minors of a matrix with degrees
⇣

1 1 1
1 1 1
2 2 2

⌘

17 2 54 rolling factors, codim 2 in cubic scroll
18 1 46 bilinked on X2,2,3 ⇢ P7 to F2
18 1 45 bilinked on X2,2,3 ⇢ P7 to F1
19 2 36 bilinked on Pf13 to F2
19 2 37 bilinked on Pf13 to F1
20 2 34 3⇥ 3 minors of 4⇥ 4 matrix with linear forms
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Degree 19 Calabi-Yau threefolds in P7
.

Theorem

There exist two families of aCM Calabi–Yau threefolds of degree
19 in P7 both having Picard number 2 .

For their construction we use unprojection and smoothing.

We start with the Segre embedding of P2 ⇥ P2 in P8.

Its intersection with a linear subspace P6 is a del Pezzo
surface S6 ⇢ P6.

Let Y13 ⇢ P6 be a general (singular) Calabi-Yau threefold of
degree 13 containing S6.
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The unprojection

Such a Y13 and S6 are defined as degeneracy loci of matrices:

Y13 :

0

BB@

A B C D
z31 z21 z22 � z33

z11 z12
z13

1

CCA and S6 :

0

@
z11 z12 z13
z21 z22 z23
z31 z32 z33

1

A ,

We can know perform a Kustin-Miller unprojection

Proposition (Kustin-Miller)

There exists a Gorenstein variety Z ⇢ P7 singular in a point p such
that the projection of Z from p is Y13 and the exceptional locus of
the projection is S6.
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Smoothing

In order to prove that Y13 may be smoothed in P7 we need to
study the singularities of Y13 and Z .

We then apply Namikawa’s criteria for the smoothing of
singularities on singular Calabi-Yau varieties.

To understand the singularities we use the Cremona transformation
based in P2 ⇥ P2 ⇢ P8.

P2 ⇥ P2 ⇥13 P8 P8 P7 ⌃2,3

S6 Y13 P7 P8 P7 ⌃2,3 \ Q2,2

The image ⌃2,3 of ⇥13 is a complete P6 section of the secant
variety of P2 ⇥ P3.
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