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Motivations General theory of Calabi-Yau manifolds
Specific aims
Structure theory in low codimension

Calabi-Yau — definition and questions

Definition
A Calabi-Yau threefold is a smooth complex projective threefold X
satisfying:

Q@ Kx=0

Q@ h'(X,0x) = h*(X,0x)=0

Main questions and conjectures:
o Classification
@ Mirror symmetry conjectures

@ Web conjecture
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Specific questions

Problems:

@ A huge majority of known families of Calabi-Yau threefolds
are strictly related to toric constructions.
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Problems:

@ A huge majority of known families of Calabi-Yau threefolds
are strictly related to toric constructions.

@ All major conjectures have been proven in that context.

@ There is almost no examples of non-toric Calabi-Yau
threefolds for which mirror symmetry has been proven.
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Specific questions

Problems:

@ A huge majority of known families of Calabi-Yau threefolds
are strictly related to toric constructions.

@ All major conjectures have been proven in that context.

@ There is almost no examples of non-toric Calabi-Yau
threefolds for which mirror symmetry has been proven.

Our main aims from the point of view of Calabi-Yau theory:

@ Fill the need of new well described constructions that could
help us see beyond the toric world.
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Motivations General theory of Calabi-Yau manifolds
Specific aims
Structure theory in low codimension

Specific questions

Problems:

@ A huge majority of known families of Calabi-Yau threefolds
are strictly related to toric constructions.

@ All major conjectures have been proven in that context.

@ There is almost no examples of non-toric Calabi-Yau
threefolds for which mirror symmetry has been proven.

Our main aims from the point of view of Calabi-Yau theory:

@ Fill the need of new well described constructions that could
help us see beyond the toric world.

@ Understand special phenomena specific to low codimensional
Calabi-Yau manifolds.
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Motivations G of Calabi-Yau manifolds
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Structure theory in low codimension

Structure theorems

We consider the following types of structure theorems:

@ Local: Gorenstein local rings of small codimension
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Motivations

Structure theory in low codimension

Structure theorems

We consider the following types of structure theorems:
@ Local: Gorenstein local rings of small codimension

@ Global: Subcanonical manifolds

codim | Gorenstein ring Subcanonical
(Projectively normal)
1 hypersurface hypersurface
3
4
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Structure theory in low codimension

Structure theorems

We consider the following types of structure theorems:
@ Local: Gorenstein local rings of small codimension

@ Global: Subcanonical manifolds

codim | Gorenstein ring Subcanonical
(Projectively normal)
1 hypersurface hypersurface
complete intersection zero locus of section of vector
bundle (Serre's construction)
3
4
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Structure theorems

We consider the following types of structure theorems:
@ Local: Gorenstein local rings of small codimension

@ Global: Subcanonical manifolds

codim | Gorenstein ring Subcanonical

(Projectively normal)

1 hypersurface hypersurface

complete intersection zero locus of section of vector
bundle (Serre's construction)

3 Pfaffian of matrix Pfaffian of vector bundle
(Buchsbaum-Eisenbud) (Okonek, Walter)

4
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Motivations General theory of Calabi-Yau manifolds
Specific aims
Structure theory in low codimension

Structure theorems

We consider the following types of structure theorems:
@ Local: Gorenstein local rings of small codimension

@ Global: Subcanonical manifolds

codim | Gorenstein ring Subcanonical

(Projectively normal)

1 hypersurface hypersurface

complete intersection zero locus of section of vector
bundle (Serre's construction)

3 Pfaffian of matrix Pfaffian of vector bundle
(Buchsbaum-Eisenbud) (Okonek, Walter)

4 Partial description: Reid 7
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Motivations G of Calabi-Yau manifolds
Sr
Structure theory in low codimension

Structure theory for Calabi-Yau threefolds

We make the following observations:
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We make the following observations:

o Calabi-Yau manifolds are always subcanonical.
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Structure theory for Calabi-Yau threefolds

We make the following observations:
o Calabi-Yau manifolds are always subcanonical.
Every Calabi-Yau threefold can be embedded into P’.

Calabi-Yau threefolds in P° are all complete intersections of
types (1,5), (2,4) or (3,3)
Calabi-Yau threefolds in P are the boundary case.
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Structure theory for Calabi-Yau threefolds

We make the following observations:
o Calabi-Yau manifolds are always subcanonical.
Every Calabi-Yau threefold can be embedded into P’.

Calabi-Yau threefolds in P° are all complete intersections of
types (1,5), (2,4) or (3,3)
o Calabi-Yau threefolds in IP® are the boundary case.

Problem (Okonek)

Classify Calabi-Yau threefolds in IPP.
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Motivations General theory of Calabi-Yau manifolds
Specific aims
Structure theory in low codimension

Structure theory for Calabi-Yau threefolds

We make the following observations:

Calabi-Yau manifolds are always subcanonical.

Every Calabi-Yau threefold can be embedded into P’.
Calabi-Yau threefolds in P° are all complete intersections of
types (1,5), (2,4) or (3,3)

o Calabi-Yau threefolds in IP® are the boundary case.

Problem (Okonek)
Classify Calabi-Yau threefolds in IPP.

Problem

Classify projectively normal Calabi-Yau threefolds in P’.
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Preliminaries

Calabi-Yau threefolds in P9 siliis

Definition

A codimension 3 submanifold X is called Pfaffian if it is the
maximal degeneracy locus of a skew-symmetric morphism of vector
bundles of odd rank E*(—t) %> E, for some t € Z.
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Calabi-Yau threefolds in P®

constructions

Definition

A codimension 3 submanifold X is called Pfaffian if it is the
maximal degeneracy locus of a skew-symmetric morphism of vector
bundles of odd rank E*(—t) %> E, for some t € Z.

With s = ¢1(E) + 2rt and rk(E) = 2r + 1 we then have:
0— Opn(—2s —t) > E*(—s—t) = E(—s) = Ix — 0,

and wx = Ox(t+2s—n—1).
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Calabi-Yau threefolds in P®

constructions

Definition

A codimension 3 submanifold X is called Pfaffian if it is the
maximal degeneracy locus of a skew-symmetric morphism of vector
bundles of odd rank E*(—t) %> E, for some t € Z.

With s = ¢1(E) + 2rt and rk(E) = 2r + 1 we then have:
0— Opn(—2s —t) > E*(—s—t) = E(—s) = Ix — 0,

and wx = Ox(t+2s—n—1).

If nis not divisible by 4 then a locally Gorenstein codimension 3
submanifold of P"*3 is Pfaffian if and only if it is sub-canonical.
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Preliminaries
First results
C fication
H r degree constructions

Calabi-Yau threefolds in P®

@ For Calabi-Yau threefolds in P we may assume t = 1 and
s=3.
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Preliminaries
i sults

Calabi-Yau threefolds in P®

@ For Calabi-Yau threefolds in P we may assume t = 1 and
s=3.

@ Our classification is reduced to looking for vector bundles with
s = 3 and enough maps E£*(—1) % E.
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Calabi-Yau threefolds in P®

constructions

@ For Calabi-Yau threefolds in P we may assume t = 1 and
s=3.

@ Our classification is reduced to looking for vector bundles with
s = 3 and enough maps E£*(—1) % E.

@ Schreyer, Walter: If X C P® is a Calabi-Yau threefold then
X = Pf(¢) for some ¢ : E*(—1) — E, a; € Z and

E = Syz'(HR(X)) ® EB O(a)).
i=1
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Preliminaries

Calabi-Yau threefolds in P®

> constructions

@ For Calabi-Yau threefolds in P we may assume t = 1 and
s=3.

@ Our classification is reduced to looking for vector bundles with
s = 3 and enough maps E£*(—1) % E.

@ Schreyer, Walter: If X C P® is a Calabi-Yau threefold then
X = Pf(¢) for some ¢ : E*(—1) — E, a; € Z and

E = Syz'(HR(X)) ® EB O(a)).
i=1

Definition
The Hartshorne-Rao module of X is the module
HR(X) = @ H (Zx (k).
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Preliminaries
First results
C ification

r degree constructions

Calabi-Yau threefolds in P®

We start our study by several general results on Calabi-Yau
threefolds in P°:
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Preliminaries
Calabi-Yau threefolds in P% A iesliis

Classification

Higher degree constructions

We start our study by several general results on Calabi-Yau
threefolds in P°:

Proposition

Let X C IP% be a smooth Calabi-Yau threefold; then X is linearly
normal.
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Calabi-Yau threefolds in P®

constructions

We start our study by several general results on Calabi-Yau
threefolds in P°:

Proposition

Let X C IP% be a smooth Calabi-Yau threefold; then X is linearly
normal.

| \

Proposition

The degree d of a Calabi-Yau threefold X C PP, that is not
contained in a hyperplane is bounded in the range 11 < d < 42.

A\
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Calabi-Yau threefolds in P®

constructions

We start our study by several general results on Calabi-Yau
threefolds in P°:

Proposition

Let X C IP% be a smooth Calabi-Yau threefold; then X is linearly
normal.

| \

Proposition

The degree d of a Calabi-Yau threefold X C PP, that is not
contained in a hyperplane is bounded in the range 11 < d < 42.

A\

In particular there is a finite number of families of Calabi-Yau
threefolds in P°.
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Calabi-Yau threefolds in P®

e constructions

degree Vector bundle
12 Ops @ 20ps(1)
13 40ps ® Ops(1)
14 7Ops or Qi6(1) & Ops(1)
15 Q3s(1) ® 30ps
16 | ker(¢)), where 9: 130ps — 20ps(1) is a general map
17 ker(¢), where ¢: 160ps — 3O0ps(1) is in one
of three families of maps
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Calabi-Yau threefolds in P®

degree Vector bundle
12 Ops ® 20@6(1)
13 40[@6 ) Op6(1)
14 7Ogps or Qi6(1) & Ops(1)
15 Q3s(1) ® 30ps
16 | ker(¢)), where 9: 130ps — 20ps(1) is a general map
17 ker(¢), where ¢: 160ps — 3O0ps(1) is in one
of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao
module (trivial or with trivial multiplication)
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Calabi-Yau threefolds in P®

degree Vector bundle
12 Ops @ 20ps(1)
13 40ps ® Ops(1)
14 70ps or Qis(1) & Ops(1)
15 Q1s(1) ® 30ps
16 | ker(¢)), where 9: 130ps — 20ps(1) is a general map
17 ker(¢), where ¢: 160ps — 3O0ps(1) is in one
of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao
module (trivial or with trivial multiplication)
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Preliminaries
First results

Calabi-Yau threefolds in P®

e constructions

degree Vector bundle
12
13
14 7Ops or
15 Q36(1) ® 30ps
16 | ker(¢)), where 9: 130ps — 20ps(1) is a general map
17 ker(¢), where ¢: 160ps — 3O0ps(1) is in one
of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao
module (trivial or with trivial multiplication);
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Preliminaries

Calabi-Yau threefolds in P®

Higher degree constructions

degree Vector bundle
12 Ops @ 20ps (1)
13 40ps ® Ops(1)
14 70ps or Qis(1) & Ops(1)
15 Q1s(1) ® 30ps
16 | ker(¢)), where 9: 130ps — 20ps(1) is a general map
17 ker(¢), where ¢: 160ps — 3O0ps(1) is in one
of three families of maps

We classify Calabi-Yau threefolds with simple Hartshorne-Rao
module (trivial or with trivial multiplication); those contained in a
quadric ; and Calabi-Yau threefolds of degree < 14.
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Preliminaries
Calabi-Yau threefolds in P° ot resuit
Classification
Higher degree constructions

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the
following way. The map ¢: 160ps — 30ps(1) is given by a 16 x 3
matrix of linear forms i.e. its columns span a P> C P20 5 P2 x PO,
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Classification
Higher degree constructions

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the
following way. The map ¢: 160ps — 30ps(1) is given by a 16 x 3
matrix of linear forms i.e. its columns span a P> C P20 5 P2 x PO,
The map v defines Calabi-Yau threefolds of degree 17 if its
corresponding P'® contains one of the following:
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First results

Classification

Higher degree constructions

Calabi-Yau threefolds in P®

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the
following way. The map ¢: 160ps — 30ps(1) is given by a 16 x 3
matrix of linear forms i.e. its columns span a P> C P20 5 P2 x PO,
The map v defines Calabi-Yau threefolds of degree 17 if its
corresponding P'® contains one of the following:

@ the graph of a linear embedding P? — PS;
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Calabi-Yau threefolds in P®

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the
following way. The map ¢: 160ps — 30ps(1) is given by a 16 x 3
matrix of linear forms i.e. its columns span a P> C P20 5 P2 x PO,
The map v defines Calabi-Yau threefolds of degree 17 if its
corresponding P'® contains one of the following:

@ the graph of a linear embedding P? — PS;
@ the graph of a 2-tuple Veronese embedding P? — PY;
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Preliminaries

First results

Classification

Higher degree constructions

Calabi-Yau threefolds in P®

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the
following way. The map ¢: 160ps — 30ps(1) is given by a 16 x 3
matrix of linear forms i.e. its columns span a P> C P20 5 P2 x PO,
The map v defines Calabi-Yau threefolds of degree 17 if its
corresponding P'® contains one of the following:

@ the graph of a linear embedding P? — PS;
@ the graph of a 2-tuple Veronese embedding P? — PY;

© the closure of the graph of a birational map P? — P° defined
by a system of cubics passing through one point.
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Preliminaries

First ults

Classification

Higher degree constructions

Calabi-Yau threefolds in P®

Three types in degree 17

The bundles for threefold of degree 17 are constructed in the
following way. The map ¢: 160ps — 30ps(1) is given by a 16 x 3
matrix of linear forms i.e. its columns span a P> C P20 5 P2 x PO,
The map v defines Calabi-Yau threefolds of degree 17 if its
corresponding P'® contains one of the following:

@ the graph of a linear embedding P? — PS;

@ the graph of a 2-tuple Veronese embedding P? — PY;

© the closure of the graph of a birational map P? — P° defined
by a system of cubics passing through one point.

Proposition

The Calabi-Yau threefolds constructed in case 3 have Picard
number > 2.
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Preliminaries

Fir Its

Classification

Higher degree constructions

Calabi-Yau threefolds in P®

Analogy with del Pezzo surfaces

Vector bundle for CY Vector bundle for DP
O]pﬁ @20]}»6(1) O]}Ds(—l)@20]p6(1)
40[@6 @ OPG(].) 20[@5 @ Oﬂms(l)
70[@6 or Q]:Ill,ﬁ(].) D OP6(1) 50[@5
Q]}-DG(]') ® 30ps Q]%ns(]-) ©® 20ps
ker(¢), ¥: 130ps — 20ps(1) | ker(y), 1: 110ps — 20ps(1)
general general
ker(¢), ¥ : 160ps — 30ps(1) ker(¢)), ¥ : 140ps — 30ps(1)
special special
2 ker(¢)), ¥: 170ps — 40ps(1)
very special 77
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First results

Classification

Higher degree constructions

Calabi-Yau threefolds in P®

Analogy with del Pezzo surfaces

Vector bundle for CY Vector bundle for DP
O]pﬁ @20]}»6(1) O]}Ds(—l)@20]p6(1)
40[@6 @ OPG(].) 20[@5 @ Oﬂms(l)
70[@6 or Q]:Ill,ﬁ(].) D OP6(1) 50[@5
Q]}-DG(]') ® 30ps Q]%ns(]-) ©® 20ps
ker(¢), ¥: 130ps — 20ps(1) | ker(y), 1: 110ps — 20ps(1)
general general
ker(¢), ¥ : 160ps — 30ps(1) ker(¢)), ¥ : 140ps — 30ps(1)
special special
2 ker(¢)), ¥: 170ps — 40ps(1)
very special 77

deg(CY) = 9 + deg(dP)
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First results

Classification

Higher degree constructions

Calabi-Yau threefolds in P®

Analogy with del Pezzo surfaces

Vector bundle for CY Vector bundle for DP
O]pﬁ @20]}»6(1) O]}Ds(—l)@20]p6(1)
40[@6 @ OPG(].) 20[@5 @ Oﬂms(l)
70[@6 or Q]:Ill,ﬁ(].) D OP6(1) 50[@5
Q]}-DG(]') ® 30ps Q]%ns(]-) ©® 20ps
ker(¢), ¥: 130ps — 20ps(1) | ker(y), 1: 110ps — 20ps(1)
general general
ker(¢), ¥ : 160ps — 30ps(1) ker(¢)), ¥ : 140ps — 30ps(1)
special special
2 ker(¢)), ¥: 170ps — 40ps(1)
very special 77

deg(CY) = 9 + deg(dP)

Using the analogy we can construct a canonical surface of degree
18 in P°



Preliminary results
Cla n results
Calabi-Yau threefolds in P” Hig constructions

Structure theorem in codimension 4

Let X be a codimension 4 projectively Gorenstein variety then the
ideal Zx admits a free resolution of the form:

0P =P Mopy b1y 0, (1)
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Preliminary results

Calabi-Yau threefolds in P’ ig constructions

Structure theorem in codimension 4

Let X be a codimension 4 projectively Gorenstein variety then the
ideal Zx admits a free resolution of the form:

0P =P Mopy b1y 0, (1)

with M = (A, B) is a (k + 1) x 2k matrix with polynomial entries
made of two blocks A, B satisfying A(B*) + B(A*) =0 and

Bt
M = ( 5 )
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Preliminary results

Calabi-Yau threefolds in P’ igl constructions

Structure theorem in codimension 4

Let X be a codimension 4 projectively Gorenstein variety then the
ideal Zx admits a free resolution of the form:

0P =P Mopy b1y 0, (1)

with M = (A, B) is a (k + 1) x 2k matrix with polynomial entries
made of two blocks A, B satisfying A(B*) + B(A*) =0 and

Bt
M = ( 5 )

Theorem (Reid)

Conversely if M = (A, B) is a matrix as above for which the rank
< k locus Dj_1 satisfies codim Dx_1 > 4 then there exists X
projectively Gorenstein of codimension 4 with resolution (1).
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Preliminary results
n results
Calabi-Yau threefolds in P’ ighe constructions

Finiteness and degree bound

Proposition

The dimension of the space of quadrics in the ideal of a
projectively normal Calabi-Yau threefold X in P7 of degree d is
20 — d i.e. h°(Zx(2)) =20 — d. Moreover, the ideal of X C P” is
generated by quintics.
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Preliminary results

Calabi-Yau threefolds in P”

Finiteness and degree bound

Proposition

The dimension of the space of quadrics in the ideal of a
projectively normal Calabi-Yau threefold X in P7 of degree d is
20 — d i.e. h°(Zx(2)) =20 — d. Moreover, the ideal of X C P” is
generated by quintics.

The following degree bounds follow:

Proposition

Let X be a nonsingular projectively normal Calabi—Yau 3-fold in
P’. The degree of X takes values between 14 and 20.
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Deg. | hb! | 12 Description
14 2 | 86 (2,4) type divisor in P! x P3
15 1 76 G(2, 5) NGNHN H{
16 1 65 X2’2,272
17 | 1 | 55 Mv = A\* M = 0, bilinked on X2 to P3
17 2 58 | 2 X 2 minors of a matrix with degrees (i i i)
17 2 54 rolling factors, codim 2 in cubic scroll
18 | 1 | 46 bilinked on X223 C P to F,
18 | 1 | 45 bilinked on X223 C P’ to F
19 2 36 bilinked on Pfy3 to F,
19 2 37 bilinked on Pfi3 to F;
20 2 34 | 3 x 3 minors of 4 x 4 matrix with linear forms
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Deg. | hb! | 12 Description

14 2 | 86 (2,4) type divisor in P! x P3

15 1 76 G(2,5)N G NHLNH;

16 1 65 X2222

17 | 1 | 55 Mv = A\*> M = 0, bilinked on X3 to P
17 2 58 | 2 x 2 minors of a matrix with degrees i i i)
17 2 54 rolling factors, codim 2 in cubic scroll

18 | 1 | 46 bilinked on X223 C P to F,

18 | 1 | 45 bilinked on X253 C P” to F

19 2 36 bilinked on Pfi3 to F

19 2 37 bilinked on Pfi3 to F;

20 2 34 | 3 x 3 minors of 4 x 4 matrix with linear forms
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Preliminary results
Classification results
Calabi-Yau threefolds in P” Higher degree constructions

Degree 19 Calabi-Yau threefolds in P.

There exist two families of aCM Calabi—Yau threefolds of degree
19 in P’ both having Picard number 2 .
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Calabi-Yau threefolds in P” Higher degree constructions

Degree 19 Calabi-Yau threefolds in P.

There exist two families of aCM Calabi—Yau threefolds of degree
19 in P’ both having Picard number 2 .

For their construction we use unprojection and smoothing.
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Calabi-Yau threefolds in P” Higher degree constructions

Degree 19 Calabi-Yau threefolds in P.

There exist two families of aCM Calabi—Yau threefolds of degree
19 in P’ both having Picard number 2 .

For their construction we use unprojection and smoothing.
@ We start with the Segre embedding of P? x P? in P8,
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Preliminary results
Classification results
Calabi-Yau threefolds in P” Higher degree constructions

Degree 19 Calabi-Yau threefolds in P.

There exist two families of aCM Calabi—Yau threefolds of degree
19 in P’ both having Picard number 2 .

For their construction we use unprojection and smoothing.
@ We start with the Segre embedding of P? x P? in P8,

o lts intersection with a linear subspace P® is a del Pezzo
surface Sg C P,
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Degree 19 Calabi-Yau threefolds in P.

There exist two families of aCM Calabi—Yau threefolds of degree
19 in P’ both having Picard number 2 .

For their construction we use unprojection and smoothing.
@ We start with the Segre embedding of P? x P? in P8,

o lts intersection with a linear subspace P® is a del Pezzo
surface Sg C P,

@ Let Y13 C P° be a general (singular) Calabi-Yau threefold of
degree 13 containing Se.
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The unprojection

Such a Yi3 and Sg are defined as degeneracy loci of matrices:

A B C D
31 201 222 — Z
Yis - 31221 22T A3 g
211 212
213

Z11 212 213
221 Z22 223 |,
Z31 Z32 Z33
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The unprojection

Such a Yi3 and Sg are defined as degeneracy loci of matrices:

A B C D
31 201 222 — Z
Yis - 31221 22T A3 g
211 212
213

Z11 212 213
221 Z22 223 |,
Z31 Z32 Z33

We can know perform a Kustin-Miller unprojection
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The unprojection

Such a Yi3 and Sg are defined as degeneracy loci of matrices:

A B C D
31 201 222 — Z
Yis - 31221 22T A3 g
211 212
213

Z11 212 213
221 Z22 223 |,
Z31 Z32 Z33

We can know perform a Kustin-Miller unprojection

Proposition (Kustin-Miller)

There exists a Gorenstein variety Z C P’ singular in a point p such
that the projection of Z from p is Y13 and the exceptional locus of
the projection is Sg.
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Smoothing

@ In order to prove that Y;3 may be smoothed in P’ we need to
study the singularities of Y313 and Z.
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Smoothing

@ In order to prove that Y;3 may be smoothed in P’ we need to
study the singularities of Y313 and Z.

@ We then apply Namikawa's criteria for the smoothing of
singularities on singular Calabi-Yau varieties.
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Smoothing

@ In order to prove that Y;3 may be smoothed in P’ we need to
study the singularities of Y313 and Z.

@ We then apply Namikawa's criteria for the smoothing of
singularities on singular Calabi-Yau varieties.

To understand the singularities we use the Cremona transformation
based in P? x P2 C P8,
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Smoothing

@ In order to prove that Y;3 may be smoothed in P’ we need to
study the singularities of Y313 and Z.

@ We then apply Namikawa's criteria for the smoothing of
singularities on singular Calabi-Yau varieties.

To understand the singularities we use the Cremona transformation
based in P? x P2 C P8,

P? x P? « O13 « P8 - » P8 , P’ s Y03

R e R

S6 © Yi3 ¢ P’ - » P8 , PY > 2273 N 0272
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Smoothing

@ In order to prove that Y;3 may be smoothed in P’ we need to
study the singularities of Y313 and Z.

@ We then apply Namikawa's criteria for the smoothing of
singularities on singular Calabi-Yau varieties.

To understand the singularities we use the Cremona transformation
based in P? x P2 C P8,

P? x P? « O13 « P8 - » P8 , P’ W

S R A N

S6 © Yi3 ¢ P’ - » P8 , PY > 2273 N 0272

The image >3 of ©13 is a complete IP% section of the secant
variety of P? x PP3.
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Thank you
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