Fano congruences of index 3 and alternating 3-forms

Emilia Mezzetti

Dipartimento di Matematica e Geoscienze Università degli Studi di Trieste mezzette@units.it

Mediterranean Complex Projective Geometry in Carry-le-Rouet May 25, 2016

Joint work with Piero De Poi, Daniele Faenzi, and Kristian Ranestad

э

- 4 同 6 4 日 6 4 日 6

Congruences of lines

K algebraically closed field, char(K) = 0

Definition

A congruence of lines in \mathbb{P}^n is a family of lines of dimension n-1, i.e. a subvariety of dimension n-1 of the Grassmannian $\mathbb{G} = \mathbb{G}(1, n) = G(2, V)$, V vector space of dimension n+1.

Definition

The order of a congruence $X \subset G(2, V)$ is the number of lines of X passing through a general point of $\mathbb{P}(V)$.

Definition

The fundamental locus F of a congruence of lines X is the set of points of \mathbb{P}^n contained in infinitely many lines of X.

・ロト ・同ト ・ヨト ・ヨト

Congruences of lines

K algebraically closed field, char(K) = 0

Definition

A congruence of lines in \mathbb{P}^n is a family of lines of dimension n-1, i.e. a subvariety of dimension n-1 of the Grassmannian $\mathbb{G} = \mathbb{G}(1, n) = G(2, V)$, V vector space of dimension n+1.

Definition

The order of a congruence $X \subset G(2, V)$ is the number of lines of X passing through a general point of $\mathbb{P}(V)$.

Definition

The fundamental locus F of a congruence of lines X is the set of points of \mathbb{P}^n contained in infinitely many lines of X.

・ロト ・同ト ・ヨト ・ヨト

Congruences of lines

K algebraically closed field, char(K) = 0

Definition

A congruence of lines in \mathbb{P}^n is a family of lines of dimension n-1, i.e. a subvariety of dimension n-1 of the Grassmannian $\mathbb{G} = \mathbb{G}(1, n) = G(2, V)$, V vector space of dimension n+1.

Definition

The order of a congruence $X \subset G(2, V)$ is the number of lines of X passing through a general point of $\mathbb{P}(V)$.

Definition

The fundamental locus F of a congruence of lines X is the set of points of \mathbb{P}^n contained in infinitely many lines of X.

The order of a linear congruence is one.

For general Λ , the linear congruence $X = \mathbb{G} \cap \Lambda$ is smooth irreducible and a Fano variety of index 2, for particular choices it can be singular or reducible.

Example

n = 3, X = smooth quadric surface: lines meeting two skew lines $n = 4, X = \mathbb{G}(1,4) \cap \mathbb{P}^6$: trisecant lines of a projected Veronese surface $n = 5, X = \mathbb{G}(1,5) \cap \mathbb{P}^{10}$: 4- secant lines of the Palatini threefold

同下 イヨト イヨト

The order of a linear congruence is one.

For general Λ , the linear congruence $X = \mathbb{G} \cap \Lambda$ is smooth irreducible and a Fano variety of index 2, for particular choices it can be singular or reducible.

Example

n = 3, X = smooth quadric surface: lines meeting two skew lines $n = 4, X = \mathbb{G}(1,4) \cap \mathbb{P}^6$: trisecant lines of a projected Veronese surface $n = 5, X = \mathbb{G}(1,5) \cap \mathbb{P}^{10}$: 4- secant lines of the Palatini threefold

同 ト イヨ ト イヨ ト

The order of a linear congruence is one.

For general Λ , the linear congruence $X = \mathbb{G} \cap \Lambda$ is smooth irreducible and a Fano variety of index 2, for particular choices it can be singular or reducible.

Example

n = 3, X = smooth quadric surface: lines meeting two skew lines $n = 4, X = \mathbb{G}(1,4) \cap \mathbb{P}^6$: trisecant lines of a projected Veronese surface $n = 5, X = \mathbb{G}(1,5) \cap \mathbb{P}^{10}$: 4- secant lines of the Palatini threefold

直 ト イヨ ト イヨ ト

The order of a linear congruence is one.

For general Λ , the linear congruence $X = \mathbb{G} \cap \Lambda$ is smooth irreducible and a Fano variety of index 2, for particular choices it can be singular or reducible.

Example

n = 3, X = smooth quadric surface: lines meeting two skew lines n = 4, $X = \mathbb{G}(1,4) \cap \mathbb{P}^6$: trisecant lines of a projected Veronese surface n = 5, $X = \mathbb{G}(1,5) \cap \mathbb{P}^{10}$: 4- secant lines of the Palatini threefold

通 と イ ヨ と イ ヨ と

Other examples of nonlinear congruences of order one:

- \bullet trisecant lines of a Bordiga surface in \mathbb{P}^4
- secant lines of a OADP (=one apparent double point) variety

In general if the fundamental locus F has codimension 2, the lines of the congruence are (n-1)-secant to F

Other examples of nonlinear congruences of order one:

- \bullet trisecant lines of a Bordiga surface in \mathbb{P}^4
- secant lines of a OADP (=one apparent double point) variety

In general if the fundamental locus F has codimension 2, the lines of the congruence are (n-1)-secant to F

• Congruences of lines in \mathbb{P}^3

Kummer: first classification results of congruences of order one and two.

Schumacher, Bordiga, C. Segre, Fano, Semple, Roth.

N. Goldstein: classification problem from the point of view of the focal locus.

Z. Ran: surfaces of order one in Grassmannians Arrondo, Sols, Gross, Turrini, Bertolini, Verra...

- Congruences of lines of order one in Pⁿ, n > 3
 Castelnuovo, Palatini, Marletta and his student Sgroi; De Poi
- Applications of congruences of order one: problems of rationality, OADP varieties, degree of irrationality of hypersurfaces, systems of conservation laws...

• • • • • • •

• Congruences of lines in \mathbb{P}^3

Kummer: first classification results of congruences of order one and two.

Schumacher, Bordiga, C. Segre, Fano, Semple, Roth.

N. Goldstein: classification problem from the point of view of the focal locus.

Z. Ran: surfaces of order one in Grassmannians Arrondo, Sols, Gross, Turrini, Bertolini, Verra...

- Congruences of lines of order one in Pⁿ, n > 3
 Castelnuovo, Palatini, Marletta and his student Sgroi; De Poi
- Applications of congruences of order one: problems of rationality, OADP varieties, degree of irrationality of hypersurfaces, systems of conservation laws...

白 ト イ ヨ ト イ ヨ

• Congruences of lines in \mathbb{P}^3

Kummer: first classification results of congruences of order one and two.

Schumacher, Bordiga, C. Segre, Fano, Semple, Roth.

N. Goldstein: classification problem from the point of view of the focal locus.

Z. Ran: surfaces of order one in Grassmannians Arrondo, Sols, Gross, Turrini, Bertolini, Verra...

- Congruences of lines of order one in Pⁿ, n > 3
 Castelnuovo, Palatini, Marletta and his student Sgroi; De Poi
- Applications of congruences of order one: problems of rationality, OADP varieties, degree of irrationality of hypersurfaces, systems of conservation laws...

We study congruences defined by 3-forms, a class of congruences that are irreducible components of some reducible linear congruences, and their residual.

Definition

Fix $\omega \in \bigwedge^3 V^*$ general 3-form $\Lambda_\omega = \{[L] \in \mathbb{P}(\bigwedge^2 V) \mid \omega(L) = 0\} \subset \mathbb{P}(\bigwedge^2 V)$ is a linear subspace of codimension n + 1 (if n > 3)

 $X_{\omega} = \Lambda_{\omega} \cap \mathbb{G}$ is an improper intersection: a congruence

 F_{ω} fundamental locus of X_{ω}

向下 イヨト イヨト

We study congruences defined by 3-forms, a class of congruences that are irreducible components of some reducible linear congruences, and their residual.

Definition

Fix $\omega \in \bigwedge^3 V^*$ general 3-form $\Lambda_{\omega} = \{[L] \in \mathbb{P}(\bigwedge^2 V) \mid \omega(L) = 0\} \subset \mathbb{P}(\bigwedge^2 V)$ is a linear subspace of codimension n + 1 (if n > 3)

 $X_{\omega} = \Lambda_{\omega} \cap \mathbb{G}$ is an improper intersection: a congruence

 F_ω fundamental locus of X_ω

通 と イ ヨ と イ ヨ と

n = 3: α -plane: lines through a point F_{ω}

n=4: quadric threefold in a $\mathbb{G}(1,3)$, F_{ω} is the \mathbb{P}^3

n = 5: $\mathbb{P}^2 \times \mathbb{P}^2$, the lines meeting two skew planes

n = 6: homogeneous G_2 variety, closed orbit of the \mathbf{G}_2 group in its adjoint representation, F_{ω} a smooth quadric (M. Kapustka – Ranestad)

n = 7: variety of reductions of Severi variety $\mathbb{P}^2 \times \mathbb{P}^2$, trisecant lines of a general projection of $\mathbb{P}^2 \times \mathbb{P}^2$ (lliev – Manivel)

n = 8: a family of lines in the Coble cubic hypersurface (Gruson – Sam)

n = 9: variety of 4-secant lines of a 6-dimensional smooth non 2-normal variety, at the border of Zak's conjectures on k-normality (Peskine, Han)

・ 同 ト ・ ヨ ト ・ ヨ

 $n=3: \alpha-$ plane: lines through a point F_{ω}

${\it n}=$ 4: quadric threefold in a $\mathbb{G}(1,3)$, ${\it F}_\omega$ is the \mathbb{P}^3

n = 5: $\mathbb{P}^2 \times \mathbb{P}^2$, the lines meeting two skew planes

n = 6: homogeneous G_2 variety, closed orbit of the \mathbf{G}_2 group in its adjoint representation, F_{ω} a smooth quadric (M. Kapustka – Ranestad)

n = 7: variety of reductions of Severi variety $\mathbb{P}^2 \times \mathbb{P}^2$, trisecant lines of a general projection of $\mathbb{P}^2 \times \mathbb{P}^2$ (lliev – Manivel)

n = 8: a family of lines in the Coble cubic hypersurface (Gruson – Sam)

n = 9: variety of 4-secant lines of a 6-dimensional smooth non 2-normal variety, at the border of Zak's conjectures on k-normality (Peskine, Han)

・ 同 ト ・ ヨ ト ・ ヨ

- n= 3: $\alpha-$ plane: lines through a point F_{ω}
- n= 4: quadric threefold in a $\mathbb{G}(1,3)$, F_ω is the \mathbb{P}^3
- n = 5: $\mathbb{P}^2 \times \mathbb{P}^2$, the lines meeting two skew planes

n = 6: homogeneous G_2 variety, closed orbit of the \mathbf{G}_2 group in its adjoint representation, F_{ω} a smooth quadric (M. Kapustka – Ranestad)

n = 7: variety of reductions of Severi variety $\mathbb{P}^2 \times \mathbb{P}^2$, trisecant lines of a general projection of $\mathbb{P}^2 \times \mathbb{P}^2$ (lliev – Manivel)

n = 8: a family of lines in the Coble cubic hypersurface (Gruson – Sam)

n = 9: variety of 4-secant lines of a 6-dimensional smooth non 2-normal variety, at the border of Zak's conjectures on k-normality (Peskine, Han)

・ 同 ト ・ ヨ ト ・ ヨ

- n= 3: $\alpha-$ plane: lines through a point F_{ω}
- n= 4: quadric threefold in a $\mathbb{G}(1,3)$, F_{ω} is the \mathbb{P}^3
- $n=5: \mathbb{P}^2 imes \mathbb{P}^2$, the lines meeting two skew planes

n = 6: homogeneous G_2 variety, closed orbit of the \mathbf{G}_2 group in its adjoint representation, F_{ω} a smooth quadric (M. Kapustka – Ranestad)

n = 7: variety of reductions of Severi variety $\mathbb{P}^2 \times \mathbb{P}^2$, trisecant lines of a general projection of $\mathbb{P}^2 \times \mathbb{P}^2$ (lliev – Manivel)

n = 8: a family of lines in the Coble cubic hypersurface (Gruson – Sam)

n = 9: variety of 4-secant lines of a 6-dimensional smooth non 2-normal variety, at the border of Zak's conjectures on k-normality (Peskine, Han)

伺下 イヨト イヨト

- $n=3: \alpha-$ plane: lines through a point F_{ω}
- n= 4: quadric threefold in a $\mathbb{G}(1,3)$, F_{ω} is the \mathbb{P}^3
- $n=5: \mathbb{P}^2 imes \mathbb{P}^2$, the lines meeting two skew planes

n = 6: homogeneous G_2 variety, closed orbit of the **G**₂ group in its adjoint representation, F_{ω} a smooth quadric (M. Kapustka – Ranestad)

n = 7: variety of reductions of Severi variety $\mathbb{P}^2 \times \mathbb{P}^2$, trisecant lines of a general projection of $\mathbb{P}^2 \times \mathbb{P}^2$ (Iliev – Manivel)

n = 8: a family of lines in the Coble cubic hypersurface (Gruson – Sam)

n = 9: variety of 4-secant lines of a 6-dimensional smooth non 2-normal variety, at the border of Zak's conjectures on k-normality (Peskine, Han)

- $n=3: \alpha-$ plane: lines through a point F_{ω}
- n= 4: quadric threefold in a $\mathbb{G}(1,3)$, F_{ω} is the \mathbb{P}^3
- $n=5: \mathbb{P}^2 imes \mathbb{P}^2$, the lines meeting two skew planes

n = 6: homogeneous G_2 variety, closed orbit of the **G**₂ group in its adjoint representation, F_{ω} a smooth quadric (M. Kapustka – Ranestad)

n = 7: variety of reductions of Severi variety $\mathbb{P}^2 \times \mathbb{P}^2$, trisecant lines of a general projection of $\mathbb{P}^2 \times \mathbb{P}^2$ (Iliev – Manivel)

n = 8: a family of lines in the Coble cubic hypersurface (Gruson – Sam)

n = 9: variety of 4-secant lines of a 6-dimensional smooth non
 2-normal variety, at the border of Zak's conjectures on
 k-normality (Peskine, Han)

 $n=3: \alpha-$ plane: lines through a point F_{ω}

- n=4: quadric threefold in a $\mathbb{G}(1,3)$, F_{ω} is the \mathbb{P}^3
- $n=5: \mathbb{P}^2 imes \mathbb{P}^2$, the lines meeting two skew planes

n = 6: homogeneous G_2 variety, closed orbit of the **G**₂ group in its adjoint representation, F_{ω} a smooth quadric (M. Kapustka – Ranestad)

n = 7: variety of reductions of Severi variety $\mathbb{P}^2 \times \mathbb{P}^2$, trisecant lines of a general projection of $\mathbb{P}^2 \times \mathbb{P}^2$ (Iliev – Manivel)

n = 8: a family of lines in the Coble cubic hypersurface (Gruson – Sam)

n = 9: variety of 4-secant lines of a 6-dimensional smooth non 2-normal variety, at the border of Zak's conjectures on k-normality (Peskine, Han)

• X_{ω} is irreducible smooth

- Its geometry depends on the parity of *n*:
 - *n* even: order 0, family of lines in a hypersurface of degree $\frac{n}{2} 1$
 - \overline{n} odd: order 1, $\frac{n-1}{2}$ secant lines of F_{ω} , of codimension 3
- X_{ω} is a Fano variety of index 3

- X_{ω} is irreducible smooth
- Its geometry depends on the parity of *n*:
 - *n* even: order 0, family of lines in a hypersurface of degree $\frac{n}{2} 1$
 - \overline{n} odd: order 1, $\frac{n-1}{2}$ secant lines of F_{ω} , of codimension 3
- X_{ω} is a Fano variety of index 3

- X_{ω} is irreducible smooth
- Its geometry depends on the parity of *n*:
 - *n* even: order 0, family of lines in a hypersurface of degree $\frac{n}{2} 1$
 - \overline{n} odd: order 1, $\frac{n-1}{2}$ secant lines of F_{ω} , of codimension 3
- X_{ω} is a Fano variety of index 3

A subspace of codimension n-1 containing Λ_{ω} depends on two linear forms $x, y \in V^*$: $\Lambda_{\omega}^{xy} = \{[L] \in \mathbb{P}(\bigwedge^2 V) \mid \omega(L) \land x \land y = 0\}.$

The residual congruence of X_{ω} $Y := Y_{\omega,x \wedge y}$ is defined by the Gorenstein liaison

$$I_Y = [I_Z \colon I_{X_\omega}]$$

where $Z = \mathbb{G} \cap \Lambda^{xy}_{\omega}$. So

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega,x \wedge y}$$

- For general choice, Y is irreducible;
- the order of Y is 0 for n odd, 1 for n even;
- Y is ICM.

A subspace of codimension n-1 containing Λ_{ω} depends on two linear forms $x, y \in V^*$: $\Lambda_{\omega}^{xy} = \{[L] \in \mathbb{P}(\bigwedge^2 V) \mid \omega(L) \land x \land y = 0\}.$

The residual congruence of X_{ω} $Y := Y_{\omega,x \wedge y}$ is defined by the Gorenstein liaison

$$I_Y = [I_Z : I_{X_\omega}]$$

where $Z = \mathbb{G} \cap \Lambda^{xy}_{\omega}$. So

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega,x \wedge y}$$

• For general choice, Y is irreducible;

- the order of Y is 0 for n odd, 1 for n even;
- Y is ICM.

通 と イ ヨ と イ ヨ と

A subspace of codimension n-1 containing Λ_{ω} depends on two linear forms $x, y \in V^*$: $\Lambda_{\omega}^{xy} = \{[L] \in \mathbb{P}(\bigwedge^2 V) \mid \omega(L) \land x \land y = 0\}.$

The residual congruence of X_{ω} $Y := Y_{\omega,x \wedge y}$ is defined by the Gorenstein liaison

$$I_Y = [I_Z : I_{X_\omega}]$$

where $Z = \mathbb{G} \cap \Lambda^{xy}_{\omega}$. So

$$\mathbb{G}\cap \Lambda^{xy}_\omega=X_\omega\cup Y_{\omega,x\wedge y}$$

- For general choice, Y is irreducible;
- the order of Y is 0 for n odd, 1 for n even;
- Y is ICM.

通 と イ ヨ と イ ヨ と

A subspace of codimension n-1 containing Λ_{ω} depends on two linear forms $x, y \in V^*$: $\Lambda_{\omega}^{xy} = \{[L] \in \mathbb{P}(\bigwedge^2 V) \mid \omega(L) \land x \land y = 0\}.$

The residual congruence of X_{ω} $Y := Y_{\omega,x \wedge y}$ is defined by the Gorenstein liaison

$$I_Y = [I_Z : I_{X_\omega}]$$

where $Z = \mathbb{G} \cap \Lambda^{xy}_{\omega}$. So

$$\mathbb{G}\cap \Lambda^{xy}_\omega=X_\omega\cup Y_{\omega,x\wedge y}$$

- For general choice, Y is irreducible;
- the order of Y is 0 for n odd, 1 for n even;

• Y is ICM.

A subspace of codimension n-1 containing Λ_{ω} depends on two linear forms $x, y \in V^*$: $\Lambda_{\omega}^{xy} = \{[L] \in \mathbb{P}(\bigwedge^2 V) \mid \omega(L) \land x \land y = 0\}.$

The residual congruence of X_{ω} $Y := Y_{\omega,x \wedge y}$ is defined by the Gorenstein liaison

$$I_Y = [I_Z : I_{X_\omega}]$$

where $Z = \mathbb{G} \cap \Lambda^{xy}_{\omega}$. So

$$\mathbb{G}\cap \Lambda^{xy}_\omega=X_\omega\cup Y_{\omega,x\wedge y}$$

- For general choice, Y is irreducible;
- the order of Y is 0 for n odd, 1 for n even;
- Y is ICM.

$0 \rightarrow \mathcal{U} \rightarrow \mathcal{V} \otimes \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{Q} \rightarrow 0,$

 ${\mathcal U}$ the universal subbundle of rank 2 ${\mathcal Q}$ the quotient bundle of rank n-1

$H^0(\mathcal{Q}) = V, \ H^0(\mathcal{U}^*) = V^*, \ H^0(\mathcal{Q}^*(1)) \simeq \bigwedge^3 V^* \Longrightarrow$

- ω defines a map $\varphi_{\omega}: \mathcal{O}_{\mathbb{G}} \to \mathcal{Q}^*(1)$
- X_{ω} is the zero locus of a section of $\mathcal{Q}^*(1)$
- for general ω, X_ω is smooth of codimension n-1
- locally free resolution which gives $\omega_{X_{\omega}} \simeq \mathcal{O}_{X_{\omega}}(-3)$:

$$0 o \mathcal{O}_{\mathbb{G}}(2-n) o \bigwedge^{n-2} (\mathcal{Q}(-1)) o \dots o \mathcal{Q}(-1) \xrightarrow{t_{arphi_{\omega}}} \mathcal{I}_{X_{\omega}} o 0.$$

伺 ト イヨト イヨト

$$0
ightarrow \mathcal{U}
ightarrow \mathcal{V} \otimes \mathcal{O}_{\mathbb{G}}
ightarrow \mathcal{Q}
ightarrow 0,$$

 \mathcal{U} the universal subbundle of rank 2 \mathcal{Q} the quotient bundle of rank n-1

$$H^0(\mathcal{Q}) = V, \ H^0(\mathcal{U}^*) = V^*, \ H^0(\mathcal{Q}^*(1)) \simeq \bigwedge^3 V^* \Longrightarrow$$

- ω defines a map $\varphi_{\omega}: \mathcal{O}_{\mathbb{G}} \to \mathcal{Q}^*(1)$
- X_{ω} is the zero locus of a section of $\mathcal{Q}^*(1)$
- for general ω , X_{ω} is smooth of codimension n-1
- locally free resolution which gives $\omega_{X_{\omega}} \simeq \mathcal{O}_{X_{\omega}}(-3)$:

$$0 o \mathcal{O}_{\mathbb{G}}(2-n) o \bigwedge^{n-2} (\mathcal{Q}(-1)) o \dots o \mathcal{Q}(-1) \xrightarrow{t_{arphi_{\omega}}} \mathcal{I}_{X_{\omega}} o 0.$$

$$0 \to \mathcal{U} \to V \otimes \mathcal{O}_{\mathbb{G}} \to \mathcal{Q} \to 0,$$

 \mathcal{U} the universal subbundle of rank 2 \mathcal{Q} the quotient bundle of rank n-1

$$H^0(\mathcal{Q}) = V, \ H^0(\mathcal{U}^*) = V^*, \ H^0(\mathcal{Q}^*(1)) \simeq \bigwedge^3 V^* \Longrightarrow$$

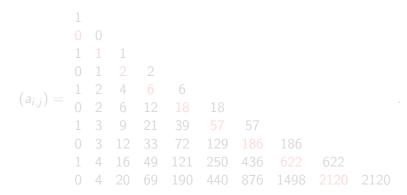
- ω defines a map $arphi_\omega:\mathcal{O}_\mathbb{G} o\mathcal{Q}^*(1)$
- X_{ω} is the zero locus of a section of $\mathcal{Q}^*(1)$
- for general ω , X_{ω} is smooth of codimension n-1
- locally free resolution which gives $\omega_{X_{\omega}} \simeq \mathcal{O}_{X_{\omega}}(-3)$:

$$0 o \mathcal{O}_{\mathbb{G}}(2-n) o \bigwedge^{n-2}(\mathcal{Q}(-1)) o \dots o \mathcal{Q}(-1) \xrightarrow{^t \varphi_\omega} \mathcal{I}_{X_\omega} o 0.$$

Degree and multidegree

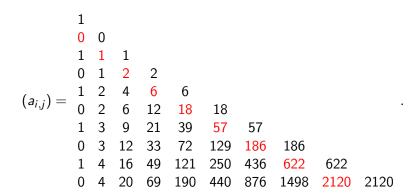
The cohomology class of X_{ω} is computed by Porteous formula, we get degree and multidegree of X_{ω} .

The multidegree is $(d_\ell(n))=(a_{(n-1-\ell,\ell)}),\ell=0,...,n-1.$



Degree and multidegree

The cohomology class of X_{ω} is computed by Porteous formula, we get degree and multidegree of X_{ω} . The multidegree is $(d_{\ell}(n)) = (a_{(n-1-\ell,\ell)}), \ell = 0, ..., n-1$.



Remark

 $igwedge^3 V^* \simeq H^0(\Omega^2_{\mathbb{P}(V)}(3) \subset H^0(\Omega^1 \otimes \Omega^1(3)) \simeq$ $\operatorname{Hom}(\Omega^1(1)^*, \Omega^1(2)) \simeq \operatorname{Hom}(\mathcal{T}(-1), \Omega^1(2))$

therefore ω defines a bundle map $\phi_{\omega} : \mathcal{T}(-1) \to \Omega^1(2)$.

We get a commutative diagram

$$\begin{array}{cccc} \mathcal{T}_{\mathbb{P}(V)}(-1) & \stackrel{\phi_{\omega}}{\longrightarrow} & \Omega^{1}_{\mathbb{P}(V)}(2) \\ & \uparrow & & \downarrow \\ V \otimes \mathcal{O}_{\mathbb{P}(V)} & \stackrel{M_{\omega}}{\longrightarrow} & V^{*} \otimes \mathcal{O}_{\mathbb{P}(V)}(1) \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- 3

Remark

$$igwedge^{3} V^{*} \simeq H^{0}(\Omega^{2}_{\mathbb{P}(V)}(3) \subset H^{0}(\Omega^{1} \otimes \Omega^{1}(3)) \simeq$$

 $\operatorname{Hom}(\Omega^{1}(1)^{*}, \Omega^{1}(2)) \simeq \operatorname{Hom}(\mathcal{T}(-1), \Omega^{1}(2))$

therefore ω defines a bundle map $\phi_{\omega} : \mathcal{T}(-1) \to \Omega^{1}(2)$.

We get a commutative diagram

$$egin{array}{cccc} \mathcal{T}_{\mathbb{P}(V)}(-1) & \stackrel{\phi_\omega}{\longrightarrow} & \Omega^1_{\mathbb{P}(V)}(2) \ & & & \downarrow \ & & \downarrow \ & V\otimes\mathcal{O}_{\mathbb{P}(V)} & \stackrel{M_\omega}{\longrightarrow} & V^*\otimes\mathcal{O}_{\mathbb{P}(V)}(1) \end{array}$$

□ > < E > < E > _ E

M_{ω} is a $(n + 1) \times (n + 1)$ skew – symmetric matrix of linear forms, of rank $\leq n$, that can be explicitly written.

The degeneracy locus of M_{ω} is F_{ω} , so

- if *n* is even, F_{ω} is a hypersurface of degree $\frac{n}{2} 1$, smooth if $n \leq 6$;
- if *n* is odd, F_{ω} is a codimension 3 subvariety of degree $\frac{1}{4}\binom{n-1}{3} + 1$, smooth if $n \leq 9$;
- the lines in X_{ω} are $(\frac{n-1}{2})$ -secant F_{ω} (*n* odd).

@▶ ◀ ⋽ ▶ ◀ ⋽

 M_{ω} is a $(n + 1) \times (n + 1)$ skew – symmetric matrix of linear forms, of rank $\leq n$, that can be explicitly written.

The degeneracy locus of M_{ω} is F_{ω} , so

- if n is even, F_ω is a hypersurface of degree ⁿ/₂ − 1, smooth if n ≤ 6;
- if *n* is odd, F_{ω} is a codimension 3 subvariety of degree $\frac{1}{4}\binom{n-1}{3} + 1$, smooth if $n \leq 9$;
- the lines in X_{ω} are $(\frac{n-1}{2})$ -secant F_{ω} (*n* odd).

The bundle map $\phi_{\omega} : \mathcal{T}(-1) \to \Omega^{1}(2)$ can be completed to an exact sequence which defines the cokernel sheaf \mathcal{C}_{ω} :

• *n* even:

$$0 \to \mathcal{T}_{\mathbb{P}(V)}(-1) \to \Omega^{1}_{\mathbb{P}(V)}(2) \to \mathcal{C}_{\omega} \to 0;$$

• n = 2m + 1:

 $0 \to \mathcal{O}_{\mathbb{P}(V)}(1-m) \to \mathcal{T}_{\mathbb{P}(V)}(-1) \to \Omega^{1}_{\mathbb{P}(V)}(2) \to \mathcal{I}_{F_{\omega}/\mathbb{P}(V)}(m) \to 0,$

where $C_{\omega} \simeq \mathcal{I}_{F_{\omega}/\mathbb{P}(V)}(m)$ $\implies F_{\omega}$ is a Fano variety of index 3.

• $\mathbb{P}(\mathcal{C}_{\omega}) \simeq I_{\omega}$, the point-line incidence variety restricted to X_{ω} .

The bundle map $\phi_{\omega} : \mathcal{T}(-1) \to \Omega^{1}(2)$ can be completed to an exact sequence which defines the cokernel sheaf \mathcal{C}_{ω} :

• *n* even:

$$0 o \mathcal{T}_{\mathbb{P}(V)}(-1) o \Omega^1_{\mathbb{P}(V)}(2) o \mathcal{C}_\omega o 0;$$

• n = 2m + 1:

$$0 \to \mathcal{O}_{\mathbb{P}(V)}(1-m) \to \mathcal{T}_{\mathbb{P}(V)}(-1) \to \Omega^1_{\mathbb{P}(V)}(2) \to \mathcal{I}_{F_\omega/\mathbb{P}(V)}(m) \to 0,$$

where $C_{\omega} \simeq \mathcal{I}_{F_{\omega}/\mathbb{P}(V)}(m)$ $\implies F_{\omega}$ is a Fano variety of index 3.

• $\mathbb{P}(\mathcal{C}_{\omega}) \simeq I_{\omega}$, the point-line incidence variety restricted to X_{ω} .

ヨッ イヨッ イヨッ

 $M_r \subset \mathbb{P}(V)$: the degeneracy locus where ϕ_{ω} has rank at most r.

- When n is odd, the incidence variety I_ω is the blow-up of P(V) along F_ω.
- When *n* is even, the restriction of the incidence variety I_{ω} is a \mathbb{P}^1 -bundle over the smooth locus $F_{\omega} \setminus M_{n-4}$, and a \mathbb{P}^{2k-1} -bundle over $M_{n-2k} \setminus M_{n-2k-2}$, for k = 2, ..., (n-2)/2.

Example

 $\mathcal{C}_{\omega}|_{F_{\omega}}$ is

- n = 4: null-correlation bundle
- n = 6: stable rank 2 bundle, G_2 homogeneous: Cayley bundle

Hilbert scheme

Define the open dense subset $\mathcal{K} \subset \bigwedge^3 V^*$ by the condition: $\omega \in \mathcal{K}$ if and only if dim $X_{\omega} = n - 1$. We get a natural morphism:

$$\rho \colon \mathbb{P}(\mathcal{K}) \to \mathcal{H},$$

 \mathcal{H} : components of the Hilbert scheme of $\mathbb{P}(\bigwedge^2 V)$ containing $[X_{\omega}]$.

Theorem

For $n \ge 5$, \mathcal{H} is irreducible and smooth at any point $[X_{\omega}]$ where X_{ω} has expected dimension. Moreover:

- (i) for $n \ge 6$, ρ is a birational embedding to an open dense subset of \mathcal{H} , so dim $(\mathcal{H}) = \binom{n+1}{3} 1$;
- (ii) for n = 5, ρ is dominant with rational curves as fibres, so $\dim(\mathcal{H}) = \binom{n+1}{3} 2$.

Quadrics containing \mathbb{G} and X_{ω}

 $\mathcal{Q}_{\omega} = \{ \text{ quadrics containing } X_{\omega} \text{ and } \mathbb{G} \}.$

Quadrics containing \mathbb{G} are parametrized by $\bigwedge^4 V^*$: $\eta \in \bigwedge^4 V^*$ defines $Q_\eta : \eta(L \wedge L) = 0$.

If η is totally decomposable, rank $Q_{\eta} = 6$;

- If $\eta = \beta \land x \land x' \neq 0$, and $\beta_{x,x'}$ is the restriction of β to $\{x = x' = 0\}$, then rank $Q_{\eta} = 2 \operatorname{rank} \beta_{x,x'} + 2 \leq 2n$.
- If $\eta = \omega \land x$, where $x \neq 0$ and ω_x is the restriction of ω to $\{x = 0\}$, then rank $Q_\eta = 2$ rank $\omega_x \le 2n$.

I heorem

• $I(\mathbb{G})_2 \cap I(\Lambda_{\omega}) = \mathcal{Q}_{\omega} = \{ \mathcal{Q}_{\omega \wedge x} \mid x \in V^* \}$ (for general ω)

• dim
$$\mathcal{Q}_{\omega} = n+1$$

イロト イポト イヨト イヨト

Quadrics containing $\mathbb G$ and X_ω

 $\mathcal{Q}_{\omega} = \{ \text{ quadrics containing } X_{\omega} \text{ and } \mathbb{G} \}.$

Quadrics containing \mathbb{G} are parametrized by $\bigwedge^4 V^*$: $\eta \in \bigwedge^4 V^*$ defines $Q_\eta : \eta(L \wedge L) = 0$.

If η is totally decomposable, rank $Q_{\eta} = 6$;

2 If
$$\eta = \beta \land x \land x' \neq 0$$
, and $\beta_{x,x'}$ is the restriction of β to $\{x = x' = 0\}$, then rank $Q_{\eta} = 2 \operatorname{rank} \beta_{x,x'} + 2 \leq 2n$.

3 If
$$\eta = \omega \wedge x$$
, where $x \neq 0$ and ω_x is the restriction of ω to $\{x = 0\}$, then rank $Q_{\eta} = 2 \operatorname{rank} \omega_x \leq 2n$.

Theorem

• $I(\mathbb{G})_2 \cap I(\Lambda_{\omega}) = \mathcal{Q}_{\omega} = \{ \mathcal{Q}_{\omega \wedge x} \mid x \in V^* \}$ (for general ω)

• dim
$$\mathcal{Q}_\omega = n+1$$

A general quadric $Q_{\omega \wedge x}$ in Q_{ω} has rank 2n, it contains two families of maximal isotropic spaces.

- Λ_ω = ⟨X_ω⟩ has codimension one in Λ[×]_ω, space of one of the two families;
- Sing Q_{ω∧x} = Λ_{ω_x} = ⟨X_{ω_x}⟩, ω_x restriction of ω to the hyperplane V_x = {x = 0}.

Moreover

- $\Lambda^{X}_{\omega} \cap \mathbb{G} = X_{\omega} \cup X_{\omega_{X}};$
- X_ω ∩ X_{ω_x} = X_ω ∩ G(2, V_x) is a hyperplane section of X_{ω_x} and has codimension 2 in X_ω.

A general quadric $Q_{\omega \wedge x}$ in Q_{ω} has rank 2n, it contains two families of maximal isotropic spaces.

- $\Lambda_{\omega} = \langle X_{\omega} \rangle$ has codimension one in Λ_{ω}^{x} , space of one of the two families;
- Sing Q_{ω∧x} = Λ_{ωx} = ⟨X_{ωx}⟩, ω_x restriction of ω to the hyperplane V_x = {x = 0}.

Moreover

• $\Lambda^{\mathsf{x}}_{\omega} \cap \mathbb{G} = X_{\omega} \cup X_{\omega_{\mathsf{x}}};$

 X_ω ∩ X_{ω_x} = X_ω ∩ G(2, V_x) is a hyperplane section of X_{ω_x} and has codimension 2 in X_ω.

A general quadric $Q_{\omega \wedge x}$ in Q_{ω} has rank 2n, it contains two families of maximal isotropic spaces.

- $\Lambda_{\omega} = \langle X_{\omega} \rangle$ has codimension one in Λ_{ω}^{x} , space of one of the two families;
- Sing $Q_{\omega \wedge x} = \Lambda_{\omega_x} = \langle X_{\omega_x} \rangle$, ω_x restriction of ω to the hyperplane $V_x = \{x = 0\}$.

Moreover

- $\Lambda^{\mathsf{x}}_{\omega} \cap \mathbb{G} = X_{\omega} \cup X_{\omega_{\mathsf{x}}};$
- X_ω ∩ X_{ω_x} = X_ω ∩ G(2, V_x) is a hyperplane section of X_{ω_x} and has codimension 2 in X_ω.

ヨッ イヨッ イヨッ

Consider a general $Y = Y_{\omega,x \wedge y}$, residual congruence to X_ω

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega,x \wedge y}$$

•
$$\Lambda_{\omega} \subset \Lambda_{\omega}^{x} \subset \Lambda_{\omega}^{xy}$$

- ⟨Y⟩ = Λ_{ω,x∧y} ⊂ Λ^{xy}_ω, maximal isotropic space in the second family in Q_{ω∧x};
- $Y = \Lambda_{\omega,x \wedge y} \cap \mathbb{G}$: improper intersection but codimension *n*;
- $X_{\omega} \cap Y$: lines of X meeting $\{x = y = 0\}$;
- $Y \cap G(2, V_x) = X_{\omega_x}$, a Weil divisor.

通 と イ ヨ と イ ヨ と

Consider a general $Y = Y_{\omega,x \wedge y}$, residual congruence to X_ω

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega,x \wedge y}$$

- $\Lambda_{\omega} \subset \Lambda_{\omega}^{x} \subset \Lambda_{\omega}^{xy}$
- ⟨Y⟩ = Λ_{ω,×∧y} ⊂ Λ^{xy}_ω, maximal isotropic space in the second family in Q_{ω∧x};
- $Y = \Lambda_{\omega,x \wedge y} \cap \mathbb{G}$: improper intersection but codimension *n*;
- $X_{\omega} \cap Y$: lines of X meeting $\{x = y = 0\}$;
- $Y \cap G(2, V_x) = X_{\omega_x}$, a Weil divisor.

• • = • • =

Consider a general $Y = Y_{\omega, x \wedge y}$, residual congruence to X_{ω}

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega, x \wedge y}$$

•
$$\Lambda_\omega \subset \Lambda^x_\omega \subset \Lambda^{xy}_\omega$$

- $\langle Y \rangle = \Lambda_{\omega,x \wedge y} \subset \Lambda_{\omega}^{xy}$, maximal isotropic space in the second family in $Q_{\omega \wedge x}$;
- $Y = \Lambda_{\omega, x \wedge y} \cap \mathbb{G}$: improper intersection but codimension *n*;
- $X_{\omega} \cap Y$: lines of X meeting $\{x = y = 0\}$;
- $Y \cap G(2, V_x) = X_{\omega_x}$, a Weil divisor.

通 と イ ヨ と イ ヨ と

Consider a general $Y = Y_{\omega,x \wedge y}$, residual congruence to X_{ω}

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega,x \wedge y}$$

•
$$\Lambda_\omega \subset \Lambda^x_\omega \subset \Lambda^{xy}_\omega$$

- $\langle Y \rangle = \Lambda_{\omega,x \wedge y} \subset \Lambda_{\omega}^{xy}$, maximal isotropic space in the second family in $Q_{\omega \wedge x}$;
- $Y = \Lambda_{\omega,x \wedge y} \cap \mathbb{G}$: improper intersection but codimension *n*;
- $X_{\omega} \cap Y$: lines of X meeting $\{x = y = 0\}$;
- $Y \cap G(2, V_x) = X_{\omega_x}$, a Weil divisor.

• • = • • = •

Consider a general $Y = Y_{\omega,x \wedge y}$, residual congruence to X_ω

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega,x \wedge y}$$

•
$$\Lambda_\omega \subset \Lambda^x_\omega \subset \Lambda^{xy}_\omega$$

- $\langle Y \rangle = \Lambda_{\omega,x \wedge y} \subset \Lambda_{\omega}^{xy}$, maximal isotropic space in the second family in $Q_{\omega \wedge x}$;
- $Y = \Lambda_{\omega,x \wedge y} \cap \mathbb{G}$: improper intersection but codimension *n*;
- $X_{\omega} \cap Y$: lines of X meeting $\{x = y = 0\}$;
- $Y \cap G(2, V_x) = X_{\omega_x}$, a Weil divisor.

• • = • • = •

Consider a general $Y = Y_{\omega, x \wedge y}$, residual congruence to X_{ω}

$$\mathbb{G} \cap \Lambda^{xy}_{\omega} = X_{\omega} \cup Y_{\omega,x \wedge y}$$

•
$$\Lambda_\omega \subset \Lambda^x_\omega \subset \Lambda^{xy}_\omega$$

- $\langle Y \rangle = \Lambda_{\omega,x \wedge y} \subset \Lambda_{\omega}^{xy}$, maximal isotropic space in the second family in $Q_{\omega \wedge x}$;
- $Y = \Lambda_{\omega,x \wedge y} \cap \mathbb{G}$: improper intersection but codimension *n*;
- $X_{\omega} \cap Y$: lines of X meeting $\{x = y = 0\}$;
- $Y \cap G(2, V_x) = X_{\omega_x}$, a Weil divisor.

• • = • • = •

 $\Pi = \{x = y = 0\}: \text{ for any hyperplane } ax + by = 0 \text{ in the pencil with support } \Pi, \text{ we have } X_{\omega_{[a:b]}}.$

Theorem

$$Y_{\omega,x\wedge y} = \cup_{[a:b]\in\mathbb{P}^1} X_{\omega_{[a:b]}}.$$

Interpretation 2 The singular locus of $Y_{\omega,x\wedge y}$ is

$$\bigcap X_{\omega_{[a:b]}} = \{L \in G(2,\Pi) \mid \omega_{x \wedge y}(L) = \omega_x(L) = \omega_y(L) = 0\},\$$

where $\omega_{x \wedge y}$ is the restriction of ω to Π . In particular the codimension of the singular locus of Y is 4.

3 For
$$n \le 4$$
, $K_Y \simeq X_{\omega_x} - 3H_Y$.

 $\Pi = \{x = y = 0\}: \text{ for any hyperplane } ax + by = 0 \text{ in the pencil with support } \Pi, \text{ we have } X_{\omega_{[a:b]}}.$

Theorem

1

$$Y_{\omega,x\wedge y} = \cup_{[a:b]\in\mathbb{P}^1} X_{\omega_{[a:b]}}.$$

2 The singular locus of $Y_{\omega,x\wedge y}$ is

$$\bigcap X_{\omega_{[a:b]}} = \{L \in G(2,\Pi) \mid \omega_{x \wedge y}(L) = \omega_x(L) = \omega_y(L) = 0\},\$$

where $\omega_{x \wedge y}$ is the restriction of ω to Π . In particular the codimension of the singular locus of Y is 4.

Theorem

 $Y_{\omega,x \wedge y}$ residual congruence of X_{ω} with respect to $\Pi = \{x = y = 0\}$ G fundamental locus of Y

- n odd: G is a hypersurface of degree $\frac{n-1}{2}$ containing Π and F_{ω} , the fundamental locus of X_{ω} ;
- n = 2m even: $G = \Pi \cup G_0$, $G_0 \subset F_\omega$, deg $G_0 = 2\binom{m+1}{3} + \binom{m+1}{2} + 2$; the lines of Y are $\frac{n-2}{2}$ - secant of G_0 meeting also Π ;
- G₀ is the residual component of G₁ = Π ∩ F_ω in the zero locus of a global section of C_ω |_{F_ω}.

伺 ト イヨト イヨト

Examples

- $n = 3 \ Y$: lines of a plane $G = \langle F_{\omega}, \Pi \rangle$
- n=4 $Y=\mathbb{P}^1 imes\mathbb{P}^2$, lines meeting Π and $\mathit{G}_0=\mathbb{P}^1$
- n = 5 Y : fourfold of degree 8 in P⁹ with a singular point, 4-dimensional family of lines of a rank 4 quadric G
- n = 6 Y : variety of degree 24, secant lines of a smooth rational normal scroll of dimension 3, meeting also Π. Sing Y is a conic corresponding to G₀ ∩ Π = G₁ ∩ F<sub>ω_{x∧y}
 </sub>
- n = 7 Y: 6-dimensional family of lines of a cubic hypersurface
- n = 8 Y: trisecant lines of a 5-dimensional variety of degree 32 meeting also a \mathbb{P}^6 .

Thank you

æ