Gianluca Occhetta

Introduction
Fano bundles
Varieties with two
P¹-fibrations

A generalization

RH manifolds
Definition
Dynkin diagrams
Cone and
contractions

Statement
Relative duali

Homogeneous model
Bott-Samelson
varieties

Conclusion

Further results

A geometric characterization of flag manifolds

Gianluca Occhetta

with R. Muñoz, L.E. Solá Conde, K. Watanabe and J. Wiśniewski

Carry-le-Rouet, May 2016

Gianluca Occhetta

Fano bundles

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_{X}(\mathcal{E})$ is a Fano manifold.

Gianluca

Occhetta

Fano bundles

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_{X}(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Gianluca Occhetta

Introduction
Fano bundles

Fano bundles
Varieties with two

A generalization

Definition
Dynkin diagram
Cone and
contractions

Main result

Relative duality
Reflections
Homogeneous model
Bott-Samelson

Further result:

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Some classification results:

ot iddition i iddit

Occhetta

ntroduction

Fano bundles

P¹-fibrations

RH manifolds
Definition

Dynkin diagrams
Cone and
contractions
Flag manifolds

Main result

Reflections
Homogeneous model
Bott-Samelson

Further results

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Some classification results:

- $otin Fano bundles of rank 2 on <math>\mathbb{P}^m$ and \mathbb{Q}^m [Ancona, Peternell, Sols, Szurek, Wiśniewski]

Gianluca Occhetta

Fano bundles

P¹-fibrations

Definition
Dynkin diagrams
Cone and
contractions

Relative duality
Reflections
Homogeneous model
Bott-Samelson
varieties

Further result:

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Some classification results:

- ☑ Fano bundles of rank 2 on del Pezzo threefolds [Szurek & Wiśniewski]

Introducti

Fano bundles

A generalizatio

RH manifold

Definition

Cone and contraction

Flag manifo

Main res

Statement

Paflactions

Homogeneous mod

Bott-Samelson varieties

Conclusion

Further results

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2=b_4=1$ (MOS, 2012).

Fano bundles Varieties with tw

P¹-fibrations

RH manifolds

Dynkin diagram

contractions Flag manifolds

Main result

Relative dualit

Homogeneous mode

varieties Conclusion

Further result:

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2=b_4=1$ (MOS, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4=2$) with two \mathbb{P}^1 -bundle structures.

Fano bundles Varieties with tw

A generalization

Definition
Dynkin diagram

contractions Flag manifolds

Main result

Relative duality Reflections Homogeneous mode

Bott-Samelson varieties

Further result

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2=b_4=1$ (MOS, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4=2$) with two \mathbb{P}^1 -bundle structures.

Later the assumption on b₄ was removed by Watanabe (2013).

Fano bundles Varieties with tw

P¹-fibrations
A generalization

Dynkin diagram
Cone and
contractions

Flag manifold

Statement Relative duality Reflections Homogeneous mode

Homogeneous mode Bott-Samelson varieties Conclusion

Further results

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2=b_4=1$ (MOS, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4=2$) with two \mathbb{P}^1 -bundle structures.

Later the assumption on b_4 was removed by Watanabe (2013).

Finally the assumption " \mathbb{P}^1 -bundle" was replaced by "smooth \mathbb{P}^1 -fibration" (MOSWa 2014).

A generalization

Definition

Dynkin diagram

Flag manifol

Flag manifo

Statement

Reflections

Homogeneous mode Bott-Samelson

Conclusion

Further results

Varieties with two \mathbb{P}^1 -fibrations

Theorem 1

Varieties with two \mathbb{P}^1 -fibrations

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

• $\mathbb{P}_{\mathbb{P}^1}(\mathbb{O} \oplus \mathbb{O})$

Definition

Cone and contractions

Flag manifold

Main resul

Relative duali

Homogeneous mode

Conclusion

Further result:

Varieties with two \mathbb{P}^1 -fibrations

Theorem 1

- $\mathbb{P}_{\mathbb{P}^1}(\mathbb{O} \oplus \mathbb{O})$
- $\bullet \ \mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2})$

A generalization

Definition
Dynkin diagrams

Cone and contractions Flag manifold

Main resul

Relative dualis

Homogeneous mode Bott-Samelson varieties

Conclusion

Varieties with two \mathbb{P}^1 -fibrations

Theorem 1

- $\mathbb{P}_{\mathbb{P}^1}(\mathfrak{O} \oplus \mathfrak{O})$
- $\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathcal{N}) = \mathbb{P}_{\mathbb{O}^3}(\mathcal{S})$ \mathcal{N} Null-correlation , \mathcal{S} Spinor

Definition

Dynkin diagrams

Cone and contractions Flag manifolds

Main resu

Statement Relative dua

Reflections Homogeneous mode Bott-Samelson

Conclusion

Further result

Varieties with two \mathbb{P}^1 -fibrations

Theorem 1

- $\mathbb{P}_{\mathbb{P}^1}(\mathfrak{O} \oplus \mathfrak{O})$
- $\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathcal{N}) = \mathbb{P}_{\mathbb{Q}^3}(S)$ \mathcal{N} Null-correlation , S Spinor
- $\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C}) = \mathbb{P}_{K(G_2)}(\mathcal{Q})$ \mathcal{C} Cayley, \mathcal{Q} universal quotient.

Definition
Dynkin diagrams
Cone and

contractions Flag manifold

Main resu

Relative duality Reflections Homogeneous model Bott-Samelson

varieties Conclusion

Further result:

Varieties with two \mathbb{P}^1 -fibrations

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

- $\mathbb{P}_{\mathbb{P}^1}(\mathfrak{O} \oplus \mathfrak{O})$
- $\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathcal{N}) = \mathbb{P}_{\mathbb{O}^3}(\mathcal{S})$ \mathcal{N} Null-correlation , \mathcal{S} Spinor
- $\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C}) = \mathbb{P}_{K(G_2)}(\mathcal{Q})$ \mathcal{C} Cayley, \mathcal{Q} universal quotient.

Remark

All the varieties appearing in the list are rational homogeneous

Introduction
Fano bundles
Varieties with two

A generalization

RH manifolds
Definition
Dynkin diagram
Cone and
contractions

Statement
Relative dualit
Reflections
Homogeneous mod
Bott-Samelson

Further results

Problem

Try to classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles - or just smooth \mathbb{P}^1 -fibrations.

Introduction
Fano bundles
Varieties with two
P¹-fibrations

A generalization

Definition
Dynkin diagram
Cone and
contractions

Main result
Statement
Relative duality
Reflections
Homogeneous model
Bott-Samelson
varieties
Conclusion

Further results

Problem

Try to classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles - or just smooth \mathbb{P}^1 -fibrations.

- The vector bundle approach seems difficult to apply to this more general situation.
- Is it possible to prove directly that these varieties are rational homogeneous?

Varieties with two P¹-fibrations

RH manifold

Definition

Dynkin diag

Cone and contractions

Flag manifo

Statement

Reflections

iomogeneous mode

Conclusion

Further results

Rational homogeneous manifolds

Definition

A Borel subgroup B of a semisimple Lie group G is a maximal closed, connected solvable algebraic subgroup. A subgroup $P \supseteq B$ is called a parabolic subgroup.

A generalizat

Definition

Dynkin diagrams

Cone and contractions

Main result Statement Relative dual Reflections

Bott-Samelson varieties Conclusion

Further results

Rational homogeneous manifolds

Definition

A Borel subgroup B of a semisimple Lie group G is a maximal closed, connected solvable algebraic subgroup. A subgroup $P \supseteq B$ is called a parabolic subgroup.

For example, if $G = \operatorname{SL}_{n+1}$, then the subgroup of invertible upper triangular matrices is a Borel subgroup, while the parabolic subgroups correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$.

Main result

Reflections
Homogeneous model
Bott-Samelson
varieties

Further results

Rational homogeneous manifolds

Definition

A Borel subgroup B of a semisimple Lie group G is a maximal closed, connected solvable algebraic subgroup. A subgroup $P\supseteq B$ is called a parabolic subgroup.

For example, if $G = SL_{n+1}$, then the subgroup of invertible upper triangular matrices is a Borel subgroup, while the parabolic subgroups correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$.

If $I = \{\alpha_1, \dots, \alpha_k\}$ and $\alpha_{k+1} := n+1$, then P(I) is the subgroup

$$\begin{pmatrix} B_1 & * & * & * \\ 0 & B_2 & * & * \\ 0 & 0 & \dots & * \\ 0 & 0 & 0 & B_{k+1} \end{pmatrix}$$

where the B_i 's are square matrices of order $a_i - a_{i-1}$.

A generalization

RH manifold

Definition

Dynkin diagrams

Flag manifo

. . .

Ctatement

Relative dualit

Reflections

iomogeneous mode sott-Samelson

varieties

Further results

Rational homogeneous manifolds

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

Fano bundles

Varieties with two

P¹-fibrations

RH manifold

Definition Dynkin diagram

Cone and contractions
Flag manifolds

Main result

Relative duality
Reflections
Homogeneous model

Homogeneous model Bott-Samelson varieties

CONCIUSION

Rational homogeneous manifolds

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

For example, if $G = SL_{n+1}$, setting

- $\{e_1, \dots, e_{n+1}\}$ standard basis of \mathbb{C}^{n+1} ;
- $I = \{a_1, ..., a_k\} \subseteq \{1, ..., n\};$
- $W_{\alpha_i} = \langle \mathbf{e}_1, \dots, \mathbf{e}_{\alpha_i} \rangle$

Varieties with tw P¹-fibrations A generalization

RH manifolds
Definition

Cone and contractions

Main result Statement

Reflections
Homogeneous model
Bott-Samelson

Conclusion

Further result

Rational homogeneous manifolds

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

For example, if $G = SL_{n+1}$, setting

- $\{e_1, \dots, e_{n+1}\}$ standard basis of \mathbb{C}^{n+1} ;
- $I = \{a_1, ..., a_k\} \subseteq \{1, ..., n\};$
- $W_{a_i} = \langle \mathbf{e}_1, \dots, \mathbf{e}_{a_i} \rangle$
- P(I) is the stabilizer w.r.t. the SL_{n+1} -action of the flag

$$W_{\alpha_1} \subset W_{\alpha_2} \subset \cdots \subset W_{\alpha_k}$$
.

Further result

Rational homogeneous manifolds

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

For example, if $G = SL_{n+1}$, setting

- $\{e_1, \dots, e_{n+1}\}$ standard basis of \mathbb{C}^{n+1} ;
- $I = \{\alpha_1, \ldots, \alpha_k\} \subseteq \{1, \ldots, n\};$
- $W_{a_i} = \langle \mathbf{e}_1, \dots, \mathbf{e}_{a_i} \rangle$
- P(I) is the stabilizer w.r.t. the SL_{n+1} -action of the flag

$$W_{\alpha_1} \subset W_{\alpha_2} \subset \cdots \subset W_{\alpha_k}$$
.

So G/P(I) is the variety $\mathbb{F}^n(a_1,\ldots,a_k)$ of flags of subspaces of dimensions a_1,\ldots,a_k of \mathbb{C}^{n+1} .

lag Manifold

Gianluca Occhetta

Introduction

Fano bundles
Varieties with two

A generalization

RH manifol

Definition

Dynkin diagrams

contraction

Flag manifo

...

Statement

Relative dual:

Reflections

Homogeneous mod

Bott-Samelson

Conclusion

Rational homogeneous manifolds

We can denote the variety $\mathbb{F}^n(\alpha_1,\dots,\alpha_k)$ by a marked diagram.

A generaliza

Definition Dynkin diagr

contractions
Flag manifold

Flag manifol

Statement Relative duali

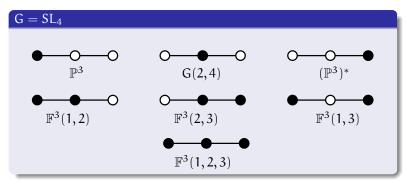
Homogeneous mo

Bott-Samelson varieties

Further result

Rational homogeneous manifolds

We can denote the variety $\mathbb{F}^n(a_1,\ldots,a_k)$ by a marked diagram.



Gianluca Occhetta

Introduction
Fano bundles
Varieties with tw

A generaliza

Definition

Cone and contractions

Flag manifold

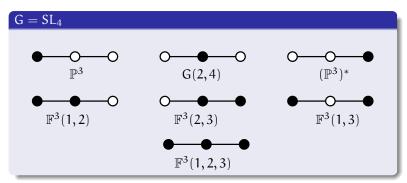
Relative duali Reflections Homogeneous mo

varieties Conclusion

Further result

Rational homogeneous manifolds

We can denote the variety $\mathbb{F}^n(a_1,\ldots,a_k)$ by a marked diagram.



The diagram used is the Dynkin diagram of the Lie algebra \$l_4:

Dynkin diagrams

Dynkin diagrams

- G semisimple Lie group,
- g associated Lie algebra,
- n rank of g.

RH manifolds

Dynkin diagrams

Cone and contractions Flag manifolds

Statement Relative dualis

Reflections

varieties

Further result

Dynkin diagrams

- G semisimple Lie group,
- g associated Lie algebra,
- n rank of g.

Parabolic subgroups again correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$, and the variety G/P(I) is denoted by marking the Dynkin diagram of $\mathfrak g$ along the nodes corresponding to I.

$$G/P(I) \leftrightarrow (\mathfrak{D}, \mathfrak{I})$$

Dynkin diagrams

Dynkin diagrams

- G semisimple Lie group,
- g associated Lie algebra,
- n rank of g.

Parabolic subgroups again correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$, and the variety G/P(I) is denoted by marking the Dynkin diagram of g along the nodes corresponding to I.

$$G/P(I) \leftrightarrow (\mathfrak{D}, \mathfrak{I})$$

Dynkin diagrams of the classical (simple) Lie algebras

A generalization

Definition

Dynkin diagrams

Cone and contractions

Flag manifold

Main res

Relative duali

Reflections

Bott-Samelson

Conclusio

Further results

Dynkin diagrams

ag Manifold

Gianluca Occhetta

Fano bundles

Varieties with two

A generalization

Definition

Dynkin diagrams

Cone and

Flag manifold

Main resu

Relative duali

Reflections

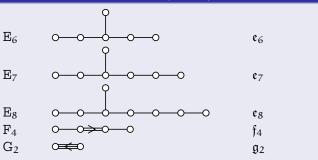
Bott-Samelson varieties

Varieties Conclusion

Further result

Dynkin diagrams

Dynkin diagrams of the exceptional (simple) Lie algebras



Dynkin diagrams of rank two semisimple Lie algebras

ag Manifold

Gianluca Occhetta

Introductio

Fano bundles

a generalization

RH manifol

Definition

Dynkin diagram:

contractions

Flag manifol

Main resul

Statement

Relative duali

Homogeneous mo

Bott-Samelson

Conclusion

Further results

Cone and contractions

X Rational Homogeneous given by $(\mathcal{D}, \mathcal{I})$.

Cone and

Cone and contractions

X Rational Homogeneous given by $(\mathfrak{D}, \mathfrak{I})$.

• X is a Fano manifold of Picard number $\rho_X = \#I$;

RH manifolds Definition

Cone and contractions

Flag manifol

Main resu Statement

Relative duali

Homogeneous mod

Bott-Samelson varieties

Further results

Cone and contractions

X Rational Homogeneous given by $(\mathfrak{D}, \mathfrak{I})$.

- X is a Fano manifold of Picard number $\rho_X = \#I$;
- The cone NE(X) is simplicial, and its faces correspond to proper subsets $J\subsetneq I$;

A generalization

Definition
Dynkin diagrams
Cone and

Flag manifold

Statement Relative dualit

Reflections Homogeneous mode

varieties Conclusion

Further result

Cone and contractions

- X is a Fano manifold of Picard number $\rho_X = \#I$;
- The cone NE(X) is simplicial, and its faces correspond to proper subsets $J \subsetneq I$;
- Every contraction $\pi: X \to Y$ is of fiber type and smooth.

RH manifolds
Definition
Dynkin diagrams

Cone and contractions

Main resul

Relative duality

Homogeneous mode

varieties Conclusion

Further results

Cone and contractions

- X is a Fano manifold of Picard number $\rho_X = \#I$;
- The cone NE(X) is simplicial, and its faces correspond to proper subsets $J \subsetneq I$;
- Every contraction $\pi: X \to Y$ is of fiber type and smooth.
- Y is RH with marked Dynkin diagram $(\mathcal{D}, \mathcal{J})$,

RH manifolds
Definition
Dynkin diagrams

Cone and contractions

Main resul

Statement

Reflections

Bott-Samelson varieties

Further result

Cone and contractions

- X is a Fano manifold of Picard number $\rho_X = \#I$;
- The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;
- Every contraction $\pi: X \to Y$ is of fiber type and smooth.
- Y is RH with marked Dynkin diagram $(\mathfrak{D}, \mathfrak{J})$,
- Every fiber is RH with marked Dynkin diagram $(\mathcal{D} \setminus \mathcal{J}, \mathcal{I} \setminus \mathcal{J})$.

RH manifolds

Dynkin diagrams Cone and contractions

Flag manifold

Main resul

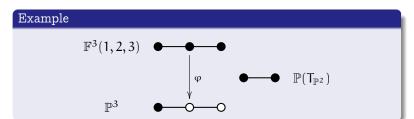
Reflections
Homogeneous mode

Bott-Samelson varieties Conclusion

Further results

Cone and contractions

- X is a Fano manifold of Picard number $\rho_X = \#I$;
- The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;
- Every contraction $\pi: X \to Y$ is of fiber type and smooth.
- Y is RH with marked Dynkin diagram $(\mathcal{D}, \mathcal{J})$,
- Every fiber is RH with marked Dynkin diagram $(\mathcal{D} \setminus \mathcal{J}, \mathcal{I} \setminus \mathcal{J})$.



Fano bundles

Varieties with two

P^I-fibrations

A generalizati

Definition

Dynkin diagra

Flag manifolds

Main res

Relative dualit

Homogeneous mode

Bott-Samelson varieties

Conclusion

Complete flag manifolds

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

contractions Flag manifolds

Statement
Relative dualit
Reflections
Homogeneous mod

Conclusion

Further results

Complete flag manifolds

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

 Every RH manifold is dominated by a complete flag manifold. RH manifolds
Definition
Dynkin diagrams
Cone and

contractions Flag manifolds

Statement Relative duality Reflections Homogeneous mod-Bott-Samelson varieties

Further results

Complete flag manifolds

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i:G/B\to G/P^i$ contractions corresponding to the unmarking of one node are \mathbb{P}^1 -fibrations.

Flag manifolds
Main result

Relative duality Reflections Homogeneous mode Bott-Samelson

Varieties Conclusion

Further results

Complete flag manifolds

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i:G/B\to G/P^i$ contractions corresponding to the unmarking of one node are \mathbb{P}^1 -fibrations.
- If Γ_i is a fiber of p_i , and K_i the relative canonical, the intersection matrix $[-K_i \cdot \Gamma_j]$ is the Cartan matrix of the Lie algebra \mathfrak{g} .

Gianluca Occhetta

Flag manifolds

Fano bundles and flag manifolds

Flag manifolds

Fano bundles and flag manifolds

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

$$\mathbb{P}_{\mathbb{P}^1}(\mathbb{O} \oplus \mathbb{O}) \qquad \mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$$

$$\mathbb{P}_{\mathbb{P}^2}(\mathsf{I}_{\mathbb{P}^2})$$

$$\mathbb{P}_{\mathbb{P}^3}(\mathcal{N})$$

$$\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C})$$

Flag manifolds

Fano bundles and flag manifolds

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

$$\mathbb{P}_{\mathbb{P}^1}(\mathbb{O}\oplus\mathbb{O})$$
 $\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$

$$\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$$

$$\mathbb{P}_{\mathbb{P}^3}(\mathcal{N})$$

$$\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C})$$

Theorem 1'

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is a complete flag manifold.

Introduction
Fano bundles
Varieties with two

A generalization

Definition

Dynkin diagrams

contractions

Flag manifol

Statement

Relative dualit

Homogeneous mode

Conclusion

Further results

Theorem 2

A Fano manifold X whose elementary contractions are \mathbb{P}^1 -fibrations is a complete flag manifold G/B, for some semisimple group G.

RH manifold

Definition
Dynkin diagrams
Cone and

contractions
Flag manifolds

Main res

Relative dual Reflections

Bott-Samelson varieties

Further result

Theorem 2

A Fano manifold X whose elementary contractions are \mathbb{P}^1 fibrations is a complete flag manifold G/B, for some semisimple group G.

Strategy:

- 1) Find a homogeneous model G/B for X.
- 2) Prove that $X \simeq G/B$.

Definition

Dynkin diagram

contractions

Flag manifol

Statement

Statement

Relative duali

Homogeneous mod

Bott-Samelson varieties

Further results

Idea of proof

Part 1) - Finding a model

The flag manifold G/B is determined by the Lie algebra \mathfrak{g} , and the Lie algebra \mathfrak{g} is determined by any one of the following data:

A generalization

Definition
Dynkin diagram
Cone and

Flag manifolds

Main res

Statement

Reflections

Homogeneous mode

Conclusion

Further results

Idea of proof

Part 1) - Finding a model

The flag manifold G/B is determined by the Lie algebra \mathfrak{g} , and the Lie algebra \mathfrak{g} is determined by any one of the following data:

- its associated root system $\Phi \subset \mathbb{R}^n$;
- its Cartan matrix $A = [a_{ij}] \in M_n(\mathbb{Z})$;
- its Dynkin diagram D.
- its Weyl group W.

Part 1) - Finding a model

Introduction Fano bundles Varieties with the \mathbb{P}^1 -fibrations

RH manifold

Dynkin diagrams Cone and contractions

Flag manifold

Main resu

Statement

Reflections Homogeneous mod

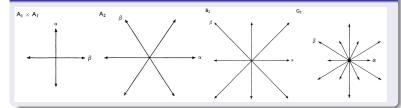
Bott-Samelson varieties

Further results

The flag manifold G/B is determined by the Lie algebra \mathfrak{g} , and the Lie algebra \mathfrak{g} is determined by any one of the following data:

- its associated root system $\Phi \subset \mathbb{R}^n$;
- its Cartan matrix $A = [a_{ij}] \in M_n(\mathbb{Z})$;
- its Dynkin diagram D.
- its Weyl group W.

Root systems of rank two semisimple Lie algebras



A generalization

Definition
Dynkin diagrams
Cone and
contractions
Flag manifolds

Main resul

Relative duality

Homogeneous model
Bott-Samelson
varieties

Conclusion

Lemma

$$\begin{split} H^i(M,D) &\cong & H^{i-1}(M,D+lK) & \text{ if } l < 0 \\ H^i(M,D) &\cong & \{0\} & \text{ if } l = 0 \\ H^i(M,D) &\cong & H^{i+1}(M,D+lK) & \text{ if } l > 0 \end{split}$$

$$\label{eq:linear_equation} \mbox{In particular} \ \ \, X(M,D) = -X(M,D + (D \cdot \Gamma + 1)K) \ \ \, \mbox{for any } D.$$

Introduction Fano bundles Varieties with two \mathbb{P}^1 -fibrations

A generalization
RH manifolds
Definition

Dynkin diagram
Cone and
contractions
Flag manifolds

Main result

Relative duality

Homogeneous mode Bott-Samelson varieties

Further results

Lemma

$$H^{i}(M, D) \cong H^{i-1}(M, D + lK)$$
 if $l < 0$
 $H^{i}(M, D) \cong \{0\}$ if $l = 0$
 $H^{i}(M, D) \cong H^{i+1}(M, D + lK)$ if $l > 0$

In particular
$$X(M,D) = -X(M,D+(D\cdot\Gamma+1)K)$$
 for any D .

	l	 -3	-2	-1	0	1	2	3	
	H ⁰	 0	0	0	0	1	2	3	
Ì	H^1	 3	2	1	0	0	0	0	

Introduction Fano bundles Varieties with two \mathbb{P}^1 -fibrations

A generalization
RH manifolds
Definition

Dynkin diagram
Cone and
contractions
Flag manifolds

Main result

Relative duality

Homogeneous mode Bott-Samelson varieties

Further results

Lemma

$$H^{i}(M, D) \cong H^{i-1}(M, D + lK)$$
 if $l < 0$
 $H^{i}(M, D) \cong \{0\}$ if $l = 0$
 $H^{i}(M, D) \cong H^{i+1}(M, D + lK)$ if $l > 0$

In particular
$$X(M,D) = -X(M,D+(D\cdot\Gamma+1)K)$$
 for any D .

	l	 -3	-2	-1	0	1	2	3	
	H ⁰	 0	0	0	0	1	2	3	
Ì	H^1	 3	2	1	0	0	0	0	

RH manifolds
Definition
Dynkin diagrams
Cone and

Main result

Relative duality
Reflections
Homogeneous mode

Bott-Samelson varieties Conclusion

Further results

Lemma

$$H^{i}(M, D) \cong H^{i-1}(M, D + lK)$$
 if $l < 0$
 $H^{i}(M, D) \cong \{0\}$ if $l = 0$
 $H^{i}(M, D) \cong H^{i+1}(M, D + lK)$ if $l > 0$

In particular
$$X(M,D) = -X(M,D+(D\cdot\Gamma+1)K)$$
 for any D .

l	 -3	-2	-1	0	1	2	3	
H ⁰	 0	0	0	0	1	2	3	
H^1	 3	2	1	0	0	0	0	

 $\begin{tabular}{ll} Introduction \\ Fano bundles \\ Varieties with two \\ P^1-fibrations \\ \end{tabular}$

RH manifolds
Definition
Dynkin diagrams
Cone and

Main result

Relative duality Reflections Homogeneous mode

Bott-Samelson varieties Conclusion

Further results

Lemma

$$\begin{split} H^{i}(M,D) &\cong \quad H^{i-1}(M,D+lK) &\quad \textit{if } l < 0 \\ H^{i}(M,D) &\cong \quad \{0\} &\quad \textit{if } l = 0 \\ H^{i}(M,D) &\cong \quad H^{i+1}(M,D+lK) &\quad \textit{if } l > 0 \end{split}$$

In particular
$$X(M,D) = -X(M,D+(D\cdot\Gamma+1)K)$$
 for any D .

l	 -3	-2	-1	0	1	2	3	
H ⁰	 0	0	0	0	1	2	3	
H^1	 3	2	1	0	0	0	0	

RH manifolds
Definition
Dynkin diagrams

Cone and contractions
Flag manifolds

Main result

Relative duality

Homogeneous mode Bott-Samelson varieties

Further results

Lemma

$$H^{i}(M, D) \cong H^{i-1}(M, D + lK)$$
 if $l < 0$
 $H^{i}(M, D) \cong \{0\}$ if $l = 0$
 $H^{i}(M, D) \cong H^{i+1}(M, D + lK)$ if $l > 0$

In particular
$$X(M, D) = -X(M, D + (D \cdot \Gamma + 1)K)$$
 for any D.

	l	 -3	-2	-1	0	1	2	3	
	H ⁰	 0	0	0	0	1	2	3	
Ì	H^1	 3	2	1	0	0	0	0	

A generalization

RH manifolds Definition

Cone and contractions

Flag manifol

Statement

Relative duality

Homogeneous mod

Bott-Samelson varieties

Further result

- X Fano manifold with Picard number n.
- $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).
- K_i relative canonical, Γ_i fiber of π_i .
- $X_X : Pic(X) \to \mathbb{Z}$ such that $X_X(L) = X(X, L)$.

A generalization

Definition

Dynkin diagrams

Cone and contractions

Main result

Relative duality
Reflections
Homogeneous model

Bott-Samelson varieties Conclusion

Further result:

• X Fano manifold with Picard number n.

• $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).

• K_i relative canonical, Γ_i fiber of π_i .

• $\chi_X : Pic(X) \to \mathbb{Z}$ such that $\chi_X(L) = \chi(X, L)$.

Given L_1, \ldots, L_n basis of Pic(X),

$$X_X(m_1,\ldots,m_n)=X(X,m_1L_1+\cdots+m_nL_n)$$

is a numerical polynomial of degree dim X; we can thus extend it to a function $\chi_X: N_1(X) \to \mathbb{R}$.

Introduction Fano bundles $\begin{array}{c} \text{Varieties with two} \\ \mathbb{P}^{1} \text{-fibrations} \end{array}$

RH manifolds
Definition
Dynkin diagrams
Cone and

Flag manifolds
Main result

Relative duality
Reflections
Homogeneous model
Bott-Samelson

Further results

• X Fano manifold with Picard number n.

• $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).

• K_i relative canonical, Γ_i fiber of π_i .

• $\chi_X : Pic(X) \to \mathbb{Z}$ such that $\chi_X(L) = \chi(X, L)$.

Given L_1, \ldots, L_n basis of Pic(X),

$$X_X(\mathfrak{m}_1,\ldots,\mathfrak{m}_\mathfrak{n})=X(X,\mathfrak{m}_1L_1+\cdots+\mathfrak{m}_\mathfrak{n}L_\mathfrak{n})$$

is a numerical polynomial of degree dim X; we can thus extend it to a function $\chi_X: N_1(X) \to \mathbb{R}$.

We define also $T:N_1(X)\to N_1(X)$ and $X_T:N_1(X)\to \mathbb{R}$ as

$$T(D) := D + K_X/2 \hspace{1cm} X_T = X_X \circ T$$

RH manifolds
Definition
Dynkin diagrams

Cone and contractions Flag manifolds

Main result
Statement
Relative duality

Reflections
Homogeneous model
Bott-Samelson

varieties Conclusion

Further result:

• X Fano manifold with Picard number n.

• $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).

• K_i relative canonical, Γ_i fiber of π_i .

• $\chi_X : Pic(X) \to \mathbb{Z}$ such that $\chi_X(L) = \chi(X, L)$.

Given L_1, \ldots, L_n basis of Pic(X),

$$X_X(\mathfrak{m}_1,\ldots,\mathfrak{m}_\mathfrak{n})=X(X,\mathfrak{m}_1L_1+\cdots+\mathfrak{m}_\mathfrak{n}L_\mathfrak{n})$$

is a numerical polynomial of degree dim X; we can thus extend it to a function $\chi_X: N_1(X) \to \mathbb{R}$.

We define also $T:N_1(X)\to N_1(X)$ and $X_T:N_1(X)\to \mathbb{R}$ as

$$\mathsf{T}(\mathsf{D}) := \mathsf{D} + \mathsf{K}_\mathsf{X}/2 \qquad \qquad \mathsf{X}_\mathsf{T} = \mathsf{X}_\mathsf{X} \circ \mathsf{T}$$

Note that $T(D) \cdot \Gamma_i = D \cdot \Gamma_i - 1$.

Reflections

Define • hyperplanes $M_i := \{D \mid D \cdot \Gamma_i = 0\}$

• linear involutions $r_i: N^1(X) \to N^1(X)$ as

$$r_{\mathfrak{i}}(D) = D + (D \cdot \Gamma_{\mathfrak{i}}) K_{\mathfrak{i}}$$

Then

Definition

Cone and contractions

Flag manifol

Main resu

Relative dualit

Reflections

Homogeneous mode: Bott-Samelson

Conclusion

Define • hyperplanes $M_i := \{D \mid D \cdot \Gamma_i = 0\}$

• linear involutions $r_i: N^1(X) \to N^1(X)$ as

$$r_i(D) = D + (D \cdot \Gamma_i) K_i$$

1 r_i fixes pointwise the hyperplane M_i .

$$r_i(K_i) = -K_i$$

$$3 \ X^T(D) = -X^T(r_{\mathfrak{i}}(D))$$

A generalization

Definition
Dynkin diagrams
Cone and

contractions Flag manifold

Main resul

Relative dualit

Reflections

Bott-Samelson varieties

Further results

Define • hyperplanes $M_i := \{D \mid D \cdot \Gamma_i = 0\}$

• linear involutions $r_i: N^1(X) \to N^1(X)$ as

$$r_i(D) = D + (D \cdot \Gamma_i) K_i$$

Then $\mathbf{0}$ \mathbf{r}_i fixes pointwise the hyperplane M_i .

$$r_i(K_i) = -K_i$$

$$3 \ X^T(D) = -X^T(r_{\mathfrak{i}}(D))$$

$$\ \, \textbf{4} \ \, \textbf{X}^T|_{\textbf{M}_{\mathfrak{i}}} \equiv \textbf{0}$$

Proof of 3). Pick D in the lattice $-K_X/2 + Pic(X)$; then

$$\begin{split} X^T(D) &= X(T(D)) = -X(T(D) + (T(D) \cdot \Gamma_i + 1)K_i) \\ &= -X(T(D) + (D \cdot \Gamma_i)K_i) = -X(T(r_i(D)) \\ &= X^T(r_i(D)) \end{split}$$

Reflections

Homogeneous model

Let $W \subset Gl(N^1(X))$ be the group generated by the r_i 's.

$$\chi^T(D) = \pm \chi^T(w(D)), \qquad \forall D \in N_1(X), \quad \forall w \in W.$$

P'-fibrations
A generalization

Definition

Dynkin diagram

Cone and contractions Flag manifolds

Main result

Relative duali

Homogeneous mod

Varieties Conclusion

Further result

Homogeneous model

Let $W \subset Gl(N^1(X))$ be the group generated by the r_i 's.

$$\chi^{\mathsf{T}}(\mathsf{D}) = \pm \chi^{\mathsf{T}}(w(\mathsf{D})), \qquad \forall \mathsf{D} \in \mathsf{N}_1(\mathsf{X}), \quad \forall w \in \mathsf{W}.$$

Theorem

The group W is finite and

$$\Phi := \{ w(-K_i) \mid w \in W, \ i = 1, ..., n \} \subset N^1(X),$$

is a root system, whose Weyl group is W and whose Cartan matrix is the intersection matrix $[-K_i \cdot \Gamma_i]$.

Further result

Homogeneous model

Let $W \subset Gl(N^1(X))$ be the group generated by the r_i 's.

$$\chi^T(D) = \pm \chi^T(w(D)), \qquad \forall D \in N_1(X), \quad \forall w \in W.$$

Theorem

The group W is finite and

$$\Phi := \{ w(-K_i) \mid w \in W, \ i = 1, ..., n \} \subset N^1(X),$$

is a root system, whose Weyl group is W and whose Cartan matrix is the intersection matrix $[-K_i \cdot \Gamma_i]$.

Idea of proof.

 X_X^T vanishes on the hyperplanes $w(M_i)$; therefore the number of these hyperplanes is bounded by the dimension of X.

Fano bundles

Varieties with two

P¹-fibrations

A generalization

D-61-1-1-

Dynkin diagram:

Flag manifol

Statement

Reflections

Homogeneous model

Conclusion

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

Definition
Dynkin diagrams
Cone and

contractions Flag manifol

Statement Relative dualit

Homogeneous model

varieties Conclusion

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product (,) on $N^1(X)$. In particular the r_i 's are euclidean reflections.

Cone and contractions Flag manifolds Main result

Statement
Relative duality
Reflections
Homogeneous model

Bott-Samelson varieties

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product $(\ ,\)$ on $N^1(X).$ In particular the r_i 's are euclidean reflections.

Using that $r_i(K_i) = -K_i$ is then straightforward (but tedious) to prove that Φ is a root system with Weyl group W.

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product (,) on $N^1(X)$. In particular the r_i 's are euclidean reflections.

Using that $r_i(K_i) = -K_i$ is then straightforward (but tedious) to prove that Φ is a root system with Weyl group W.

Since (,) is W-invariant, $(K_j,K_i)=(r_i(K_j),-K_i)$ which gives

$$\langle K_j, K_i \rangle := 2 \frac{(K_j, K_i)}{(K_i, K_i)} = -K_j \cdot \Gamma_i,$$

so the Cartan matrix of Φ is the intersection matrix $[-K_j \cdot \Gamma_i]$.

RH manifolds
Definition

Dynkin diagram

Flag manifol

Statement Relative dualit

Homogeneous mode Bott-Samelson

varieties

Further results

Idea of Proof

Part 2) - Proving the isomorphism

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell=(l_1,\ldots,l_t),$ list of indices in $\{1,\ldots,n\}$ we can associate

Bott-Samelson

Idea of Proof

Part 2) - Proving the isomorphism

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell = (l_1, \ldots, l_t)$, list of indices in $\{1, \ldots, n\}$ we can associate

1 An element $w(\ell)$ of the Weyl group: the product of simple reflections:

$$w(\ell) = r_{l_1} \circ \cdots \circ r_{l_t}$$

Bott-Samelson

Idea of Proof

Part 2) - Proving the isomorphism

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell = (l_1, \ldots, l_t)$, list of indices in $\{1, \ldots, n\}$ we can associate

1 An element $w(\ell)$ of the Weyl group: the product of simple reflections:

$$w(\ell) = r_{l_1} \circ \cdots \circ r_{l_t}$$

2 A subvariety X_{ℓ} of X, defined as the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2}, \dots, \Gamma_{l_t}$ starting from x:

$$X_\ell := \pi_{l_t}^{-1}(\pi_{l_t}(\ldots(\pi_{l_2}^{-1}(\pi_{l_2}(\pi_{l_1}^{-1}(\pi_{l_1}(x)))))))$$

Gianluca Occhetta

Introduction Fano bundles $\begin{array}{c} \text{Varieties with tw} \\ P^1 \text{-fibrations} \end{array}$

RH manifold Definition

Dynkin diagrams
Cone and
contractions
Flag manifolds

Statement
Relative dualit
Reflections
Homogeneous mod
Bott-Samelson

varieties Conclusion

Further results

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell=(l_1,\ldots,l_t)$, list of indices in $\{1,\ldots,n\}$ we can associate

1 An element $w(\ell)$ of the Weyl group: the product of simple reflections:

$$w(\ell) = r_{l_1} \circ \cdots \circ r_{l_t}$$

A subvariety X_ℓ of X, defined as the set of points belonging to chains of rational curves Γ_{l1}, Γ_{l2}..., Γ_{lt} starting from x:

$$X_\ell := \pi_{l_t}^{-1}(\pi_{l_t}(\ldots(\pi_{l_2}^{-1}(\pi_{l_2}(\pi_{l_1}^{-1}(\pi_{l_1}(x)))))))$$

3 A smooth t-dimensional variety Z_{ℓ} , with a morphism $f_{\ell}: Z_{\ell} \to X_{\ell}$, which is a tower of \mathbb{P}^1 -bundles.

RH manifol

Dynkin diagram

contractions

Flag manifol

Statement

Relative dualit

Homogeneous mode Bott-Samelson

varieties

Further result:

Bott-Samelson varieties

RH manifol

Definition Dynkin diagram

contractions

Flag manifol

Statement Statement

Reflections

Homogeneous mod Bott-Samelson

Conclusion

Further results

Bott-Samelson varieties

Set $\ell[1] = (l_1, \dots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

• If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.

Definition
Dynkin diagram

contractions Flag manifolds

Statement Relative duali

Reflections
Homogeneous mod
Bott-Samelson

Conclusion

Further results

Bott-Samelson varieties

- If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.
- Z_{ℓ} is built inductively on $Z_{\ell[1]}$:

Definition
Dynkin diagrams

contractions Flag manifolds

Statement
Relative dualit

Homogeneous mode Bott=Samelson

Conclusion

Further results

Bott-Samelson varieties

- If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.
- Z_{ℓ} is built inductively on $Z_{\ell[1]}$:

Definition

Dynkin diagrams

Cone and

contractions Flag manifolds

Statement
Relative dualit
Reflections

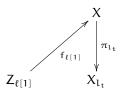
Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

- If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.
- Z_{ℓ} is built inductively on $Z_{\ell[1]}$:



Definition
Dynkin diagrams
Cone and

contractions Flag manifold

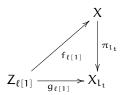
Statement
Relative dualit
Reflections

Bott-Samelson varieties

Conclusion

Bott-Samelson varieties

- If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.
- Z_{ℓ} is built inductively on $Z_{\ell[1]}$:



Definition
Dynkin diagrams
Cone and

contractions Flag manifolds

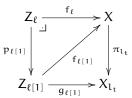
Statement Relative dualit Reflections Homogeneous mod

Bott-Samelson varieties

Conclusion

Bott-Samelson varieties

- If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.
- Z_{ℓ} is built inductively on $Z_{\ell[1]}$:



Introduction

Fano bundles
Varieties with two

A generalization

RH manifold

Definition

Dynkin diagr

contraction:

Flag manifol

Main resu

Statement

Relative quali

Homogeneous mo

Bott-Samelson varieties

Conclusion

Further results

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

Introduction
Fano bundles

A generalization

RH manifolds
Definition
Dynkin diagram

contractions
Flag manifold

Statement Relative dualit

Homogeneous mod

Bott-Samelson varieties

Conclusion

Punthan manulta

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

One can prove that ℓ is reduced if and only if

Definition
Dynkin diagram
Cone and
contractions

Main result Statement

Reflections Homogeneous mod

Bott-Samelson varieties

Further results

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

One can prove that ℓ is reduced if and only if

- $\textbf{1} \ \, \text{The dimension of} \, \, X_{\ell} \, \, \text{is} \, \, \#(\ell)$
- 2 The morphism $f_\ell: Z_\ell \to X_\ell$ is birational

Introduction

Fano bundles

Varieties with tw

RH manifolds

Definition

Dynkin diagrams

Main result

Relative duality
Reflections
Homogeneous model
Bott-Samelson

Further results

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

One can prove that ℓ is reduced if and only if

- **1** The dimension of X_{ℓ} is $\#(\ell)$
- 2 The morphism $f_{\ell}: Z_{\ell} \to X_{\ell}$ is birational

In W there exists a unique longest element w_0 , such that if ℓ_0 is a reduced list such that $w(\ell_0) = w_0$ then $\#(\ell_0) = \dim X$.

In particular $f_{\ell}: Z_{\ell_0} \to X$ is surjective and birational.

Fano bundles

Varieties with two

A generalization

RH manifolds Definition

Definition
Dynkin diagram

contractions

Main resu

Relative dualit

Homogeneous mo

Bott-Samelson

Conclusion

Further results

- $\overline{X} \simeq G/B$ homogeneus model of X,
- ℓ_0 list such that $w(\ell_0) = w_0$,
- Z_{ℓ_0} , \overline{Z}_{ℓ_0} Bott-Samelson varieties of X and \overline{X} .

P'-fibrations
A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

contractions Flag manifold

Main resul

Relative duali

Reflections
Homogeneous mod

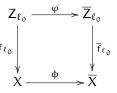
Bott-Samelson

Conclusion

Further results

• $\overline{X} \simeq G/B$ homogeneus model of X,

- ℓ_0 list such that $w(\ell_0) = w_0$,
- Z_{ℓ_0} , \overline{Z}_{ℓ_0} Bott-Samelson varieties of X and \overline{X} .



Introduction

Fano bundles

Varieties with two

P'-fibrations
A generalization

RH manifolds
Definition
Dynkin diagrams
Cone and
contractions

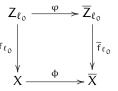
Main result
Statement
Relative dualit
Reflections
Homogeneous mod
Bott-Samelson

Conclusion

Further result:

• $\overline{X} \simeq G/B$ homogeneus model of X,

- ℓ_0 list such that $w(\ell_0) = w_0$,
- Z_{ℓ_0} , \overline{Z}_{ℓ_0} Bott-Samelson varieties of X and \overline{X} .



The idea is to show inductively that Z_{ℓ_0} depends only on the list and on the intersection matrix, and that f_{ℓ_0} , \bar{f}_{ℓ_0} are contractions of the same face of the cone of curves.

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

Definition
Dynkin diagrams
Cone and

contractions
Flag manifolds

Statement
Relative duality
Reflections
Homogeneous mode:
Bott-Samelson
varieties

Further result

A generalization

Theorem 2'

X smooth projective variety of Picard number $\mathfrak n$, such that there exist $\mathfrak n$ extremal rays, whose associated elementary contractions $\pi_i:X\to X_i$ are smooth $\mathbb P^1$ -fibrations. Then X is isomorphic to a flag manifold G/B, for some semisimple group G.