Superficial Fibres of Generic Projections

Ziv Ran

University of California, Riverside

Carry-Le-Rouet, May 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

1 Introduction and set-up

1 Introduction and set-up

<□▶ <□▶ <□▶ < □▶ < □▶ < □▶ = •○</p>

Vision problem: Given a geometric object X, described by finitely many functions $x_1, ..., x_N$ (real or complex-valued) i.e. the mapping $(x_1, ..., x_N)$ is one to one,

then choose randomly a subspace W of given dimension in the space V spanned by the x_i .

How much information is lost by passing from V to W? In other words, for a basis $y_1, ..., y_m$ of W, how far is the mapping

 $(y_1, ..., y_m)$ from being one to one ?

Analogue of 'seeing' a 3-dimensional object on a 2-dimensional retina.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ヨ のへで

Algebro-geometric version: $X \subset \mathbb{P}^N =: P$ smooth subvariety of dim n, codim c

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} &\Lambda = \mathbb{P}^{\lambda} \subset P \text{ disjoint from } X, \ \lambda \geq 0. \\ &G_{\lambda} = \mathbb{G}(\lambda + 1, P) \text{ parameter space for } (\lambda + 1) \text{-spaces in } P \\ &\Sigma_{\Lambda} = \{L \in G_{\lambda} : \Lambda \subset L\} \simeq \mathbb{P}^{N-\lambda-1} \\ &\pi_{\Lambda} : X \to \mathbb{P}^{N-\lambda-1} \text{ projection, with image } = \bar{X}, \\ &\text{then we ask: how singular is } \bar{X} ? \end{split}$$

Multisecants and expectations

Singularities of \bar{X} have to do with multisecant spaces of X: Secant locus:

 $Sec_k(X)_G = \{L \in G : length(X \cap L) \ge k\}$ It has expected codimension $k(c - \lambda - 1)$ in G. More generally, for a partition $(k.) = (k_1 \ge ... \ge k_r > 0)$, we say $X \cap L$ is of type (k.) if it has the form $\sum k_i p_i, p_i \in X$, strictly so if the p_i are distinct.

Then we have the contact locus

 $Sec_{(k.)}(X)_G = \{L \in G : L \cap X \text{ dominates a cycle of type } (k.)\}$

it has expected codim $k(c - \lambda) - r$ (make most sense if L is 1-dimensional, i.e. $\lambda = 0$)

There are many examples where these are ill-behaved.

Generic expectations

However, let

$$egin{aligned} X_k^\Lambda &= Sec_k(X)_G \cap \Sigma_\Lambda \subset ar X, \ X_k^\lambda &= X_k^\Lambda ext{ for generic } \Lambda \end{aligned}$$

<ロト </p>

Likewise for $X^{\Lambda}_{(k.)}, X^{\lambda}_{(k.)}$. There are no bad examples of these. We expect they are

well-behaved.

1 Introduction and set-up

- Classical results: for curves, surfaces, X_k^{λ} well behaved.
- Mather- Alzati-Ottaviani: $X_{(k)}^{0}$ well behaved (smooth of expected dimension)
- Other results on X_k^0 : Beheshti- Eisenbud et al.
- Definitive and optimal result on $X_{(k.)}^0$: Gruson-Peskine (2013):
- $X_{(k.)}^0$ smooth of expected dimension at a point *L* such that $L \cap X$ is strictly of type (k.).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- X_k^0 is smooth at L whenever length $(L \cap X) = k$.
- Consequently, a general secant of type (k.) is strict.

Secant rational curves

Result 1: General ambient spaces

X = smooth subvariety of smooth variety P

G=parameter space for nice family of rational curves on P, filling up P.

Can define $Sec_k(X)_G$, $Sec_{(k.)}(X)_G$ similarly as the curves in G secant to X.

Then also $X_{k,G}^{\Lambda} = \text{curves in } G$ k-secant to X and passing through Λ , $X_{k,G}^{0} = X_{k,G}^{\lambda}$ for Λ general. Similarly for $X_{(k.),G}^{0}$.

Theorem

 $X^{0}_{(k.),G}$ is smooth of expected dimension near any L such that $L \cap X$ is strictly of type (k.). Near any L, $X^{0}_{(k.),G}$ has the expected singularities (in particular, smooth normalization). 'Expected singularities': if $L \cap X$ has length $k = \sum k_i$ = singularities of space of divisors of type (k.) on \mathbb{A}^1 ; =space of polynomials factorizable as $\prod (x - a_i)^{k_i}$ smooth if $(k.) = (1^k)$. if $L \cap X$ has length > k: = union of branches as above, corresponding to length-ksubschemes of $L \cap X$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $P = G(2,5) = \mathbb{G}(1,4), X \subset P$ a 4-fold.

P contains a 6-dimensional family of 'lines' (i.e. pencils) For any $\Lambda \in P$, there is a 3-dimensional family of these lines through Λ . Of these, finitely many will be 'trisecant' to X, provided Λ is general.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Curvilinear case

Now back to projective space. G = Grassmannian of $(\lambda + 1)$ -spaces.

Result 2: curvilinear fibres.

Now λ is arbitrary but we assume $L \cap X$ is curvilinear (=embedding dimension 1 or less).

This happens always when $\lambda=0$ but also for $\lambda>0$ in small dimensions: for example, whenever

$$\lambda < \min(c, c+1-n/2).$$

Theorem

 $X_{(k,.)}^{\lambda}$ is smooth of expected dimension near any L such that $L \cap X$ is strictly of type (k.). Near any $L \in G$ with $L \cap X$ finite, $X_{(k,.)}^{0}$ has the expected singularities (in particular, smooth normalization). Result 3: superficial fibres, no contact conditions.

Here we assume $L \cap X$ has local embedding dimension 2 or less. This happens provided $\lambda \leq 1$ but also for other λ when dimensions are small.

Theorem

Assume L is general in X_k^{λ} and $c > \lambda + 1$. Then $Z = L \cap X$ is reduced. Moreover Z maps to a transverse k-fold point (= transverse tangent planes) of \overline{X} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

For example, the hypotheses in the Thm are satisfied for $\lambda = 2, c = 4$ provided dim $(X) \le 11$.

Remark

Essential ingredient: smoothness of Hilbert scheme of points on a smooth surface Hence, smoothness of Hilbert scheme at any suprficial scheme. Expect: Same conclusion holds whenever $L \cap X$ is unobstructed as abstract scheme.

《曰》 《聞》 《臣》 《臣》 三臣 …

Outline

Idea of proof in simplest case: $\lambda = 0, P = \mathbb{P}^{N}$. Based on 'Uniformity principle' (Gruson-Peskine): Project to \mathbb{P}^{N-1} from $\Lambda \in \mathbb{P}^{N}$ generic. L general k-secant through Λ , $x_1, ..., x_k \in L \cap X$. Then, pick an *arbitrary* point $x \in L \setminus \{x_1, ..., x_k\}$. The projection is unramified at x. In other words, x moves freely as L moves.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

In particular, $x \notin X$.

Quiz: what's another, very common, 'uniformity principle' in Algebraic Geometry ? Answer: a vector bundle on \mathbb{P}^1 that is generically generated by sections is a direct sum of nonnegative line bundles, hence is everywhere generated (and as a bonus, has $H^1 = 0$) H^1 is related to obstruction theory, so this suggests setting up the problem as a deformation theory problem. Let N denote the normal bundle of L in \mathbb{P}^N (= $(N-1)\mathcal{O}(1)$ in case $\lambda = 0$). Can define a *secant subsheaf* $N^s \subset N$ corresponding to local motions of L preserving the total length of $L \cap X$. Explicitly,

$$N^{s} = \{\phi \in Hom(\mathcal{I}_{L}, \mathcal{O}_{L}) : \phi(\mathcal{I}_{X} \cap \mathcal{I}_{L}) \subset \mathcal{I}_{X}.\mathcal{O}_{L} = \mathcal{I}_{X}/(\mathcal{I}_{X} \cap I_{L})\}$$

It has colength k(c-1) in N.

Now, our assumption that Λ was general in \mathbb{P}^N means that N^s is generated by sections at Λ , hence generically, hence everywhere. Hence $H^1(N^s) = 0$ so deformations are unobstructed, end of story. If $\lambda > 0$, so $L \simeq \mathbb{P}^{\lambda+1}$ is no longer \mathbb{P}^1 , use instead the fact that N^s coincides with N_L over the hyperplane $\Lambda \subset L$ (because $\Lambda \cap X = \emptyset$), plus the fact that sections of N^s 'move with Λ ', i.e. given any section of N_Λ , there is a section of N^s compatible with it (by generality of Λ), to conclude

$$H^1(N^s(-1))=0.$$

Hence we have unobstructedness and, moreover, the sheaf N^s is 0-regular.

Moreover, this argument also applies to suitable subsheaves of N^s . This can be used to prove the result on superficial fibres, using smoothness of the Hilbert scheme at any superficial scheme Z. Once we know Z is reduced, we have

$$N_L/N^s = \bigoplus_{p \in Z} N_{L,p}/(T_{X,p} \cap T_{L,p}) =: \bigoplus Q_p$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

therefore the surjectivity of $H^0(N_L(-1)) \to \bigoplus Q_p(-1)$ (by the vanishing of $H^1(N^s(-1))$) yields the transversality of the branch tangent spaces to \bar{X} at $\pi_{\Lambda}(Z)$. Big open question:

For $\lambda > 1$, can a nonsmoothable finite scheme occur in a fibre of a generic projection from a λ -plane ?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで