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Introduction

The main objects of my talk are irreducible holomorphic
symplectic manifolds and automorphisms.

Connection with the moduli space of smooth cubic threefolds
(work of Allcock-Carlson-Toledo, 2011).

joint work with S. Boissière and C. Camere.
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Definition

A complex manifold X is an irreducible holomorphic symplectic
manifolds (IHS for short) if it is a smooth, compact, Kähler manifold
such that

X is simply connected;

X admits a unique (up to scalar multiplication) holomorphic
2-form ωX ∈ H0(Ω2

X) wich is everywhere non–degenerate.

Consequences:
I dimX = 2n is even,
I the canonical divisor KX is trivial.
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Examples

2 well known families of examples (Beauville-Fujiki):

I The Hilbert scheme parametrizing n points on a K3 surface S. We
denote it by S[n], dimS[n] = 2n.

I The generalized Kummer varieties Kn−1 of dimension 2(n− 1) (for
n = 2 these are the Kummer surfaces).
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Moduli space

We recall the description of the moduli space of S[n], n ≥ 2.

Recall that

(H2(S[n],Z), q) = U3 ⊕ E2
8 ⊕ 〈−2(n− 1)〉 := L,

with q the Beauville-Bogomolov-Fujiki quadratic form, U the
hyperbolic lattice of rank 2 and signature (1, 1), E8 the negative
definite lattice associated to the corresponding Dynkin diagram.
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There is a surjective holomorphic map (Huybrechts, Markmann,
Verbitsky):

P :M0
L −→ ΩL = {[ω] ∈ P(L ⊗ C) | q(ω) = 0, q(ω, ω̄) > 0}

defined by P((X,ωX , ηX)) = η−1
X (ωX).

Where M0
L is a connected component of the moduli space of

manifolds X that are deformation equivalent to S[n] (we write
X ∼ S[n] or say that X is of type S[n]) and

ηX : L −→ H2(X,Z), is a marking

It is a 21-dimensional analytic open space.
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Automorphisms

Definition

Let X ∼ S[n]. An automorphism σ ∈ Aut(X) of finite order m is
symplectic if σ∗ωX = ωX , and it is (purely) non-symplectic if
σ∗ωX = ζmωX , where ζm is a primitive mth-root of unity.

The automorphism σ induces an action on H2(X,Z).

Denote

T = {x ∈ H2(X,Z) |σ∗(x) = x}, the invariant lattice,

S = T⊥ ∩H2(X,Z), the orthogonal complement of T .
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Assume σ acts on X (purely) non-symplectically.

Let

NS(X) = H1,1(X) ∩H2(X,Z), the Néron Severi lattice,

Transc(X) = NS(X)⊥ ∩H2(X,Z), the transcendental lattice.

Then T ⊂ NS(X) and Transc(X) ⊂ S.
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Examples

Natural automorphisms: ϕ acts non-symplectically on a K3
surfaces S, induces ϕ[n] acting non-symplectically on S[n].

Fano variety of lines:

V = {x3
0 + f3(x1, . . . , x5) = 0} ⊂ P5 smooth cubic fourfold

F (V ) := {l ∈ Grass(1, 5)|l ⊂ V }, Fano variety of lines of V.

Beauville-Donagi ’85: F (V ) ∼ S[2].

The automorphism of P5

σ : (x0 : x1 : . . . : x5) 7→ (ζ3x0 : x1 : . . . : x5), ζ3 = exp
2πi
3

induces a non-symplectic automorphism of order 3 on F (V ).
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In this example (Boissière-Camere-S. 2015):

T = 〈6〉; S = U2 ⊕ E2
8 ⊕A2

where

A2 =

(
−2 1
1 −2

)
so that sgnS = (2, 20).
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Setting

In this talk we consider X an IHS manifold that is deformation
equivalent to S[2], i.e. the dimension is 4.

We have H2(S[2],Z) = U3 ⊕ E2
8 ⊕ 〈−2〉

σ acts on X non-symplectically with prime order p 6= 2, i.e.
σ∗ωX = ζpωX .

Recall that 2 ≤ p ≤ 23 (and all cases occur!).
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Aim of the talk

We want to study the moduli space of pairs (X,σ).

We want to generalize a similar construction of van Geemen,
Dolgachev, Kondo for K3 surfaces and of Joumaah for involutions
on S[2].
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The construction

Definition

Let T be an even, non–degenerate lattice of signature (1, r − 1),
r = rankT .
A T -polarized IHS manifold deformation equivalent to S[2] is a pair
(X, ι) such that

X ∼ S[2],

ι : T ↪→ NS(X) is a primitive embedding.

Consider now X ∼ S[2] and σ acting non–symplectically on it with
order p.

We get in a natural way a morphism:

ρ : 〈σ〉 −→ O(L)

from the cyclic group of order p generated by σ to the isometries
of the lattice L = U3 ⊕ E2

8 ⊕ 〈−2〉.
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(ρ, T )-polarizations

Definition

Let (Y, ηY ) with Y ∼ S[2] and marking ηY : L −→ H2(Y,Z). A
(ρ, T )-polarization of (Y, ηY ) is:

A T -polarization of Y compatible with the marking ηY .

An action by a non–symplectic automorphism σY of order p on Y
such that the action of σY on H2(Y,Z) is the ”same” as the action
of σ, i.e. σ∗Y = ηY ρ(σ)η−1

Y .

Observe that the second condition ensures that the invariant
lattice for the action of σY on H2(Y,Z) is isometric to T .

One can define in a natural way isomorphism classes of
(ρ, T )-polarized IHS manifolds.
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Period map

For a (ρ, T )-polarized IHS manifold (Y, σY ) as before recall that
T ⊂ NS(Y ) and Transc(Y ) ⊂ T⊥ ∩ L = S.

More precisely the period ωY ∈ Sζp (the eigenspace of σ on S ⊗ C
with respect to the eigenvalue ζp).

We have

[ωY ] ∈ B := {[ω] ∈ P(Sζp ⊗ C) | q(ω, ω̄) > 0}

Since we are assuming p 6= 2 we get the condition q(ω) = 0 for free.
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A complex ball

Let m be the multiplicity of the eigenvalue ζp of σY on S ⊗ C. We
have (p− 1)m = rankS.

The quadratic form q restricted to Sζp is an hermitian form of
signature (1,m− 1).

B is isomorphic to a complex ball of dimension m− 1.

It is not true that for any ω ∈ B we can find an IHS manifold
Y ∼ S[2] with non–symplectic automorphism of order p of the
fixed type (i.e. such that Y is (ρ, T )–polarized).
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MBM classes

Definition

Let X ∼ S[2] and δ ∈ H1,1(X,Q) a non–zero class, q(δ) < 0. We call δ
a MBM class if there exists a birational map

F : X 99K Y

and g ∈ O+(H2(X,Z)) that is a Hodge isometry, such that a face of
the Kähler cone g(f∗(KY )) is contained in δ⊥.

Here O+(H2(X,Z)) denotes the isometries of H2(X,Z) which
preserve the positive cone.

We denote by ∆(X) the set of MBM classes that are primitive and
integral, i.e. they belong to NS(X).
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Amerik-Verbitsky 2014

Let X ∼ S[2] and

CX ⊂ {α ∈ H1,1(X,R) | q(α) > 0}

The positive cone, i.e. the component that contains the Kähler
cone KX .

Theorem (Amerik-Verbitsky 2014)

The Kähler cone KX is a connected component of

CX\
⋃

δ∈∆(X)

δ⊥

The MBM classes play the role of (−2)-classes for K3 surfaces.

The connected components in the previous decomposition
correspond to the birational models of X (finite number).
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Our theorem

Same assumption as above with X ∼ S[2] and σ acting
non–symplectically on it with order p, recall that Sζp is the eigenspace
corresponding to the eigenvalue ζp for the action of σ on S ⊗ C.

Theorem (Boissière-Camere-S. 2015)

Assume dimSζp ≥ 2 then

If (Y, ηY ) is an IHS manifold of type S[2] which is (ρ, T )-polarized
then the period belongs to

B\∆

where ∆ =
⋃
δ∈∆(S) δ

⊥, and ∆(S) are the classes in S that are
primitive integral MBM classes for some deformation of X.

The converse is also true!
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In the second part of the theorem we can have several birational
models in the fiber over a point ω ∈ B\∆.

If ω ∈ ∆ by the surjectivity of the period map we have Y ∼ S[2]

with ωY = ω but Y does not admit a non–symplectic
automorphism of the fixed kind (i.e. such that Y is
(ρ, T )–polarized).
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Fano variety of lines

Recall the example

V = {x3
0 + f3(x1, . . . , x5) = 0} ⊂ P5 smooth cubic fourfold,

F (V ) := {l ∈ Grass(1, 5)|l ⊂ V },Fano variety of lines of V

The automorphism of P5

σ : (x0 : x1 : . . . : x5) 7→ (ζ3x0 : x1 : . . . : x5), ζ3 = exp
2πi
3

induces a non-symplectic automorphism of order 3 on F (V ).

We have
T = 〈6〉, S = U2 ⊕ E2

8 ⊕A2,

sgnS = (2, 20).
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The Ball quotient

In this case Sζ3 is 11-dimensional and the moduli space of pairs
(F (V ), σ) can be identified with the 10-dimensional ball quotient:

Ω :=
B\∆

Γ

where Γ is an arithmetic subgroup of the group of isometries of L.

Taking a generic ω ∈ Ω we get over this point only one IHS
manifold of type S[2] with non–symplectic automorphism of order
three and invariant lattice equal to 〈6〉. This is (F (V ), σ) (number
of moduli of such pairs is 10).
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Cubic threefolds

Recall that a smooth cubic threefold in P4 depends also on
10 parameters.....
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Allcock-Carlson-Toledo 2011

The moduli space of smooth cubic threefolds is exactly

Ω :=
B\∆

Γ

A rich geometry....
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Ingredients in the proof of the theorem

Result of Amerik-Verbitsky on the decomposition of the positive
cone.

Markman-Verbitsky Torelli theorem for X ∼ S[2]:
Let f̄ ∈ O+(H2(X,Z)) (isometries that preserve the positive cone)
which is also an Hodge isometry and assume that f preserves the
Kähler cone. Then there exists a unique automorphism
f : X −→ X such that f∗ = f̄ .

Methods of Joumaah for a similar description of the moduli space
of IHS manifolds with non–symplectic involution.
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