A relation between the moduli space of some irreducible holomorphic symplectic fourfolds and the moduli space of cubic threefolds

Alessandra Sarti

Laboratoire de Mathématiques et Applications

Mediterranean Complex Projective Geometry, Carry Le Rouet

Université de Poitiers

Mathématiques

Introduction

- The main objects of my talk are irreducible holomorphic symplectic manifolds and automorphisms.
- Connection with the moduli space of smooth cubic threefolds (work of Allcock-Carlson-Toledo, 2011).
- joint work with S. Boissière and C. Camere.

- N

Definition

A complex manifold X is an irreducible holomorphic symplectic manifolds (IHS for short) if it is a smooth, compact, Kähler manifold such that

- X is simply connected;
- X admits a unique (up to scalar multiplication) holomorphic 2-form $\omega_X \in H^0(\Omega_X^2)$ wich is everywhere non-degenerate.

• Consequences:

- dim X = 2n is even,
- the canonical divisor K_X is trivial.

(D) (A) (A) (A)

Examples

- 2 well known families of examples (Beauville-Fujiki):
 - ▶ The Hilbert scheme parametrizing *n* points on a K3 surface *S*. We denote it by $S^{[n]}$, dim $S^{[n]} = 2n$.
 - The generalized Kummer varieties K_{n-1} of dimension 2(n-1) (for n=2 these are the Kummer surfaces).

Moduli space

We recall the description of the moduli space of S^[n], n ≥ 2.
Recall that

$(H^2(S^{[n]},\mathbb{Z}),q) = U^3 \oplus E_8^2 \oplus \langle -2(n-1) \rangle := \mathcal{L},$

with q the Beauville-Bogomolov-Fujiki quadratic form, U the hyperbolic lattice of rank 2 and signature (1, 1), E_8 the negative definite lattice associated to the corresponding Dynkin diagram.

• There is a surjective holomorphic map (Huybrechts, Markmann, Verbitsky):

$$\mathcal{P}: \mathcal{M}^0_{\mathcal{L}} \longrightarrow \Omega_{\mathcal{L}} = \{ [\omega] \in \mathbb{P}(\mathcal{L} \otimes \mathbb{C}) \, | \, q(\omega) = 0, \, q(\omega, \bar{\omega}) > 0 \}$$

defined by $\mathcal{P}((X, \omega_X, \eta_X)) = \eta_X^{-1}(\omega_X).$

Where $\mathcal{M}^0_{\mathcal{L}}$ is a connected component of the moduli space of manifolds X that are deformation equivalent to $S^{[n]}$ (we write $X \sim S^{[n]}$ or say that X is of type $S^{[n]}$) and

$$\eta_X : \mathcal{L} \longrightarrow H^2(X, \mathbb{Z}), \text{ is a marking}$$

• It is a 21-dimensional analytic open space.

Automorphisms

Definition

Let $X \sim S^{[n]}$. An automorphism $\sigma \in \operatorname{Aut}(X)$ of finite order m is symplectic if $\sigma^* \omega_X = \omega_X$, and it is (purely) non-symplectic if $\sigma^* \omega_X = \zeta_m \omega_X$, where ζ_m is a primitive mth-root of unity.

- The automorphism σ induces an action on $H^2(X, \mathbb{Z})$.
- Denote

 $T = \{x \in H^2(X, \mathbb{Z}) \mid \sigma^*(x) = x\}, \text{ the invariant lattice,}$ $S = T^{\perp} \cap H^2(X, \mathbb{Z}), \text{ the orthogonal complement of } T.$

イロト イヨト イヨト

- Assume σ acts on X (purely) non-symplectically.
- Let

$$\begin{split} \mathrm{NS}(X) &= H^{1,1}(X) \cap H^2(X,\mathbb{Z}), \, \text{the Néron Severi lattice}, \\ \mathrm{Transc}(X) &= NS(X)^{\perp} \cap H^2(X,\mathbb{Z}), \, \text{the transcendental lattice}. \end{split}$$

• Then $T \subset NS(X)$ and $Transc(X) \subset S$.

Examples

- Natural automorphisms: φ acts non-symplectically on a K3 surfaces S, induces $\varphi^{[n]}$ acting non-symplectically on $S^{[n]}$.
- Fano variety of lines:

 $V = \{x_0^3 + f_3(x_1, \dots, x_5) = 0\} \subset \mathbb{P}^5 \text{ smooth cubic fourfold}$ $F(V) := \{l \in \text{Grass}(1, 5) | l \subset V\}, \text{ Fano variety of lines of V}.$

- Beauville-Donagi '85: $F(V) \sim S^{[2]}.$
- The automorphism of \mathbb{P}^5

$$\sigma: (x_0: x_1: \ldots: x_5) \mapsto (\zeta_3 x_0: x_1: \ldots: x_5), \, \zeta_3 = \exp^{\frac{2\pi i}{3}}$$

induces a non-symplectic automorphism of order 3 on F(V).

In this example (Boissière-Camere-S. 2015):

$$T = \langle 6 \rangle; \ S = U^2 \oplus E_8^2 \oplus A_2$$

where

$$A_2 = \left(\begin{array}{cc} -2 & 1\\ 1 & -2 \end{array}\right)$$

so that sgn S = (2, 20).

ъ

イロト イヨト イヨト

Setting

- In this talk we consider X an IHS manifold that is deformation equivalent to $S^{[2]}$, i.e. the dimension is 4.
- We have $H^2(S^{[2]},\mathbb{Z}) = U^3 \oplus E_8^2 \oplus \langle -2 \rangle$
- σ acts on X non-symplectically with prime order $p \neq 2$, i.e. $\sigma^* \omega_X = \zeta_p \omega_X$.
- Recall that $2 \le p \le 23$ (and all cases occur!).

-

- We want to study the moduli space of pairs (X, σ) .
- We want to generalize a similar construction of van Geemen, Dolgachev, Kondo for K3 surfaces and of Journaah for involutions on $S^{[2]}$.

The construction

Definition

Let T be an even, non–degenerate lattice of signature (1, r - 1), $r = \operatorname{rank} T$.

A T-polarized IHS manifold deformation equivalent to $S^{[2]}$ is a pair (X,ι) such that

•
$$X \sim S^{[2]}$$

• $\iota: T \hookrightarrow NS(X)$ is a primitive embedding.

- Consider now $X \sim S^{[2]}$ and σ acting non–symplectically on it with order p.
- We get in a natural way a morphism:

$$\rho: \langle \sigma \rangle \longrightarrow O(\mathcal{L})$$

from the cyclic group of order p generated by σ to the isometries of the lattice $\mathcal{L} = U^3 \oplus E_8^2 \oplus \langle -2 \rangle$.

(ρ, T) -polarizations

Definition

Let (Y, η_Y) with $Y \sim S^{[2]}$ and marking $\eta_Y : \mathcal{L} \longrightarrow H^2(Y, \mathbb{Z})$. A (ρ, T) -polarization of (Y, η_Y) is:

- A *T*-polarization of *Y* compatible with the marking η_Y .
- An action by a non-symplectic automorphism σ_Y of order p on Y such that the action of σ_Y on $H^2(Y, \mathbb{Z})$ is the "same" as the action of σ , i.e. $\sigma_Y^* = \eta_Y \rho(\sigma) \eta_Y^{-1}$.
- Observe that the second condition ensures that the invariant lattice for the action of σ_Y on $H^2(Y, \mathbb{Z})$ is isometric to T.
- One can define in a natural way isomorphism classes of (ρ, T) -polarized IHS manifolds.

Period map

- For a (ρ, T) -polarized IHS manifold (Y, σ_Y) as before recall that $T \subset NS(Y)$ and $Transc(Y) \subset T^{\perp} \cap \mathcal{L} = S$.
- More precisely the period $\omega_Y \in S_{\zeta_p}$ (the eigenspace of σ on $S \otimes \mathbb{C}$ with respect to the eigenvalue ζ_p).
- We have

$$[\omega_Y] \in \mathbb{B} := \{ [\omega] \in \mathbb{P}(S_{\zeta_p} \otimes \mathbb{C}) \, | \, q(\omega, \bar{\omega}) > 0 \}$$

• Since we are assuming $p \neq 2$ we get the condition $q(\omega) = 0$ for free.

イロト イポト イヨト イヨト 二日

A complex ball

- Let *m* be the multiplicity of the eigenvalue ζ_p of σ_Y on $S \otimes \mathbb{C}$. We have $(p-1)m = \operatorname{rank} S$.
- The quadratic form q restricted to S_{ζ_p} is an hermitian form of signature (1, m 1).
- \mathbb{B} is isomorphic to a complex ball of dimension m-1.
- It is not true that for any $\omega \in \mathbb{B}$ we can find an IHS manifold $Y \sim S^{[2]}$ with non-symplectic automorphism of order p of the fixed type (i.e. such that Y is (ρ, T) -polarized).

イロト イヨト イヨト

MBM classes

Definition

Let $X \sim S^{[2]}$ and $\delta \in H^{1,1}(X, \mathbb{Q})$ a non-zero class, $q(\delta) < 0$. We call δ a MBM class if there exists a birational map

$$F: X \dashrightarrow Y$$

and $g \in O^+(H^2(X,\mathbb{Z}))$ that is a Hodge isometry, such that a face of the Kähler cone $g(f^*(\mathcal{K}_Y))$ is contained in δ^{\perp} .

- Here $O^+(H^2(X,\mathbb{Z}))$ denotes the isometries of $H^2(X,\mathbb{Z})$ which preserve the positive cone.
- We denote by $\Delta(X)$ the set of MBM classes that are primitive and integral, i.e. they belong to NS(X).

Amerik-Verbitsky 2014 Let $X \sim S^{[2]}$ and

$$\mathcal{C}_X \subset \{\alpha \in H^{1,1}(X,\mathbb{R}) \,|\, q(\alpha) > 0\}$$

The positive cone, i.e. the component that contains the Kähler cone \mathcal{K}_X .

Theorem (Amerik-Verbitsky 2014) The Kähler cone \mathcal{K}_X is a connected component of $\mathcal{C}_X \setminus [] \delta^{\perp}$

• The MBM classes play the role of (-2)-classes for K3 surfaces.

 $\delta \in \Delta(X)$

• The connected components in the previous decomposition correspond to the birational models of X (finite number).

・ロト ・四ト ・ヨト ・ヨト

Our theorem

Same assumption as above with $X \sim S^{[2]}$ and σ acting non-symplectically on it with order p, recall that S_{ζ_p} is the eigenspace corresponding to the eigenvalue ζ_p for the action of σ on $S \otimes \mathbb{C}$.

Theorem (Boissière-Camere-S. 2015)

Assume dim $S_{\zeta_p} \geq 2$ then

 If (Y, η_Y) is an IHS manifold of type S^[2] which is (ρ, T)-polarized then the period belongs to

 $\mathbb{B}\backslash\Delta$

where $\Delta = \bigcup_{\delta \in \Delta(S)} \delta^{\perp}$, and $\Delta(S)$ are the classes in S that are primitive integral MBM classes for some deformation of X.

• The converse is also true!

- In the second part of the theorem we can have several birational models in the fiber over a point $\omega \in \mathbb{B} \setminus \Delta$.
- If ω ∈ Δ by the surjectivity of the period map we have Y ~ S^[2] with ω_Y = ω but Y does not admit a non-symplectic automorphism of the fixed kind (i.e. such that Y is (ρ, T)-polarized).

Fano variety of lines

• Recall the example

 $V = \{x_0^3 + f_3(x_1, \dots, x_5) = 0\} \subset \mathbb{P}^5 \text{ smooth cubic fourfold},$ $F(V) := \{l \in \text{Grass}(1, 5) | l \subset V\}, \text{Fano variety of lines of V}$

• The automorphism of \mathbb{P}^5

$$\sigma: (x_0: x_1: \ldots: x_5) \mapsto (\zeta_3 x_0: x_1: \ldots: x_5), \, \zeta_3 = \exp^{\frac{2\pi i}{3}}$$

induces a non-symplectic automorphism of order 3 on F(V). • We have

$$T = \langle 6 \rangle, \ S = U^2 \oplus E_8^2 \oplus A_2,$$

 $\operatorname{sgn} S = (2, 20).$

The Ball quotient

• In this case S_{ζ_3} is 11-dimensional and the moduli space of pairs $(F(V), \sigma)$ can be identified with the 10-dimensional ball quotient:

$$\Omega := \frac{\mathbb{B} \backslash \Delta}{\Gamma}$$

where Γ is an arithmetic subgroup of the group of isometries of \mathcal{L} .

• Taking a generic $\omega \in \Omega$ we get over this point only one IHS manifold of type $S^{[2]}$ with non-symplectic automorphism of order three and invariant lattice equal to $\langle 6 \rangle$. This is $(F(V), \sigma)$ (number of moduli of such pairs is 10).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Recall that a smooth cubic threefold in \mathbb{P}^4 depends also on 10 parameters.....

ъ

イロト イヨト イヨト

Allcock-Carlson-Toledo 2011

• The moduli space of smooth cubic threefolds is exactly

$$\Omega := \frac{\mathbb{B} \backslash \Delta}{\Gamma}$$

• A rich geometry....

æ

Ingredients in the proof of the theorem

- Result of Amerik-Verbitsky on the decomposition of the positive cone.
- Markman-Verbitsky Torelli theorem for $X \sim S^{[2]}$: Let $\bar{f} \in O^+(H^2(X,\mathbb{Z}))$ (isometries that preserve the positive cone) which is also an Hodge isometry and assume that f preserves the Kähler cone. Then there exists a unique automorphism $f: X \longrightarrow X$ such that $f^* = \bar{f}$.
- Methods of Joumaah for a similar description of the moduli space of IHS manifolds with non–symplectic involution.