Flag bundles and homogeneity of Fano manifolds

L.E. Solá Conde

joint with G. Occhetta, K. Watanabe and J. Wiśniewski

Carry le Rouet, 05/26/2016

Flag bundles & homogeneity of Fano manifolds

Abstract

- Only known examples of X Fano with T_X nef are RH spaces.
- Strategy: using rational curves contained in X to construct a flag manifold dominating X.
- Goal: illustrate this method by proving the homogeneity of manifolds whose family of minimal rational curves satisfies certain homogeneity conditions at every point.
- Material belongs to joint works with G. Occhetta, K. Watanabe, and J. Wiśniewski (available online here and here)

Framework

- X smooth complex projective variety
- Fano manifold: $-K_X = \det(T_X)$ ample
- RH manifold (\mathbb{P}^n , quadrics, Grassmannians,...):

 $\frac{G}{P} = \frac{\text{Semisimple}}{\text{Parabolic}}$

Contents

Fanos and RH manifolds

Contractions of Fano manifolds

- $\mathrm{N}_1(X):$ real lin. comb. of irred. curves mod \sim_{num}
- $\rho_X := \dim(\mathrm{N}_1(X)) {:}$ Picard number of X
- $\overline{\operatorname{NE}(X)}\subset\operatorname{N}_1(X){:}$ cl. of the cone gen. by eff. 1-cycles

Contractions of Fano manifolds

- $\mathrm{N}_1(X) \mathrm{:}$ real lin. comb. of irred. curves mod \sim_num
- $\rho_X := \dim(N_1(X))$: Picard number of X
- $NE(X) \subset N_1(X)$: cl. of the cone gen. by eff. 1-cycles

Theorem (Cone and contraction theorem for Fanos) If X Fano:

- $\overline{NE(X)} = NE(X)$ rational polyhedral.
- For every extremal ray R de NE(X), there exists $\phi_R : X \to Y$ contracting curves with class in R.
- R gen. by the class of a rational curve.

Types of contractions

Types of contractions

Problem

Find (nontrivial) examples of Fanos with only smooth f.t. contractions.

- (Picard number one, products) Rational homogeneous, ...
- Examples usually have large automorphism groups (why?)

Contractions of RH manifolds

G semisimple, \mathfrak{g} Lie algebra, \mathcal{D} Dynkin diagram (nodes D)

- $\label{eq:alpha} \text{-} (\text{marking} \iff \text{RH manifold}) \ I \subset \mathsf{D} \quad \mapsto \quad \mathcal{D}(I) = \mathsf{G}/\mathsf{P}(I)$
- (contractions \iff delete nodes) $I \supset J \quad \mapsto \quad p: \mathcal{D}(I) \to \mathcal{D}(J)$
- Fibers of p are homogeneous: $\mathcal{D}_J(I \setminus J)$
- $\operatorname{NE}(\mathcal{D}(I))$ is simplicial, generated by the marked nodes I of D
- For complete flag $\mathcal{D}(D)$, elem. cont. are \mathbb{P}^1 -bundles (p_1, \ldots, p_n)
- Lie algebra $\mathfrak{g} \leftrightarrow$ intersection matrix $(-K_i \cdot \Gamma_j)$

Characterization of complete flags [OSW]

Theorem

X smooth projective variety, such that $\exists \ \Gamma_i \in N_1(X), \ i = 1, \dots, \rho_X \ extremal \ K_X$ -negative classes, whose associated contractions are smooth \mathbb{P}^1 -bundles. Then $X \cong G/B$, for some G semisimple.

A non homogeneous example

 \mathbb{P}^3

- (Ottaviani, Kanemitsu)

Q⁵

 $B_3(1,3)$ —

 \mathbb{P}^2

 \mathbb{O}^6

Contents

Campana-Peternell Conjecture

Positivity and homogeneity

Theorem (Mori'79) $T_X ample \Rightarrow X = \mathbb{P}^m.$

Positivity and homogeneity

Theorem (Mori'79) $T_X ample \Rightarrow X = \mathbb{P}^m.$

- $T_X \text{ nef} \Rightarrow ??$
- Examples:

Homog. mfds.

Abelian

RH

Positivity and homogeneity

Theorem (Mori'79) $T_X ample \Rightarrow X = \mathbb{P}^m.$

- $T_X \text{ nef} \Rightarrow ??$
- Examples: Homog. mfds.

 $T_{X} nef \Rightarrow \begin{cases} X \stackrel{\text{``etale}}{\leftarrow} X' \stackrel{F}{\rightarrow} A \\ F Fano, T_{F} nef \end{cases} \xrightarrow{} RH$

Abelian

The CP Conjecture

Conjecture (Campana–Peternell'91)

Every Fano manifold with nef tangent bundle ("CP-manifold") is rational homogeneous.

The CP Conjecture

Conjecture (Campana–Peternell'91)

Every Fano manifold with nef tangent bundle ("CP-manifold") is rational homogeneous.

For X CP manifold:

- Every contraction of X is smooth f.t.
- $\pi: X \to Y$ contraction $\Rightarrow Y, \pi^{-1}(y)$ are CP manifolds ([DPS,SW])
- NE(X) is simplicial

Evidences

- G Lie group, P = P(I)
- Reconstruct G/B from G/P as successive families of rat. curves

$$\bullet \qquad \bullet \qquad \bullet \qquad \bullet \qquad \mathbb{P}(\mathsf{T}_{\mathbb{P}^n}) = \mathrm{A}_n(1, n)$$

- ${\sf G}$ Lie group, ${\sf P}={\sf P}(I)$
- Reconstruct G/B from G/P as successive families of rat. curves

• • • • • • •
$$A_n(1,2,n)$$

- G Lie group, P = P(I)
- Reconstruct G/B from G/P as successive families of rat. curves

$$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet A_n(1,2,3,n)$$

- G Lie group, P = P(I)
- Reconstruct G/B from G/P as successive families of rat. curves

• • • • • • •
$$A_n(1,2,3,4,n)$$

- G Lie group, P = P(I)
- Reconstruct G/B from G/P as successive families of rat. curves

• • • • • • •
$$A_n(1,2,3,4,...,n)$$

- G Lie group, P = P(I)
- Reconstruct G/B from G/P as successive families of rat. curves

• • • • • • • •
$$A_n(1,2,3,4,\ldots,n)$$

- Sometimes: no complete families

- G Lie group, P = P(I)
- Reconstruct G/B from G/P as successive families of rat. curves

• • • • • • • $A_n(1,2,3,4,\ldots,n)$

- Sometimes: no complete families
- In progress

Bottom-up arguments

- Width of a CP manifold X:

$$\tau(X) := \sum_{\substack{C \text{ min.} \\ \text{rat. curve}}} (-K_X \cdot C - 2) \in \mathbb{Z}_{\geq 0}$$

- CP conjecture holds for FT manifolds is equivalent to:

Conjecture (Untangling) X CP, $\tau(X) > 0$. \exists contr. $X_1 \rightarrow X$, with X_1 CP, $\tau(X_1) < \tau(X)$.

Contents

Fano varieties with rational homogeneous VMRT

VMRT of a family of rational curves

- Family of minimal rational curves:

- $\tau_x:\mathcal{M}_x\to \mathbb{P}(\Omega_{X,x})$ bir. fin. morphism (x gen.) [HM],[K]
- VMRT at x: $C_x = \tau_x(\mathcal{M}_x)$

The theorems of Mok and Hong-Hwang

Theorem X be a Fano manifold, $\rho_X = 1$, $x \in X$ general. G/P corresponding to a long simple root, $o \in G/P$. $C_o \subset \mathbb{P}(\Omega_{G/P,o}), C_x \subset \mathbb{P}(\Omega_{X,x})$ the corresponding VMRT's. Then:

 $\mathcal{C}_{\mathbf{x}} \stackrel{\text{proj.}}{\cong} \mathcal{C}_{\mathbf{o}} \Rightarrow \mathbf{X} \cong \mathbf{G}/\mathbf{P}$

The theorems of Mok and Hong-Hwang

Theorem

X be a Fano manifold, $\rho_X = 1$, $x \in X$ general. G/P corresponding to a long simple root, $o \in G/P$. $C_o \subset \mathbb{P}(\Omega_{G/P,o}), C_x \subset \mathbb{P}(\Omega_{X,x})$ the corresponding VMRT's. Then:

 $\mathcal{C}_{x} \stackrel{\text{proj.}}{\cong} \mathcal{C}_{o} \Rightarrow X \cong G/P$

- VMRT of G/P: not homogeneous in general
- Within the class of G/P's, Picard one, associated to long simple roots, the VMRT is homogeneous and determines G/P

Recognizing homogeneity from rational curves

Theorem (OSW)

Let X be a Fano manifold, $\rho_X = 1$, $p: \mathcal{U} \to \mathcal{M}$ be an unsplit dominating complete family of rational curves with smooth evaluation morphism $q: \mathcal{U} \to X$. Assume that $\mathcal{M}_x \cong G/P$, for every $x \in X$. Then X is RH.

Recognizing homogeneity from rational curves

Theorem (OSW)

Let X be a Fano manifold, $\rho_X = 1$, $p: \mathcal{U} \to \mathcal{M}$ be an unsplit dominating complete family of rational curves with smooth evaluation morphism $q: \mathcal{U} \to X$. Assume that $\mathcal{M}_x \cong G/P$, for every $x \in X$. Then X is RH.

- No need to consider any particular projective embedding of \mathcal{M}_{x}
- Need to assume that q is smooth
- Need to assume that every \mathcal{M}_x is RH (unless rel. Pic. 1)

Sketch of the proof

1. Reconstructing the complete flag:

2. Finding an extra \mathbb{P}^1 -bundle:

3. Use the characterization of flags for $\widetilde{\mathcal{U}} \Rightarrow X \operatorname{RH}$

MCPG, 05/26/2016

1. Reconstructing the complete flag

- Fiber F (RH), then $q:\mathcal{U}\to X$ is locally (analytically) trivial ([FG])
- q provides $\theta \in H^1(X,G), \, G = \operatorname{Aut}(F)^\circ$ (semisimple), F = G/P
- θ determines a principal bundle E_G over X such that $\mathcal{U}=E_G\times_G G/P$
- Set $\widetilde{\mathcal{U}} := E_G \times_G G/B \to X$
- Comes with a contraction to $\pi: \widetilde{\mathcal{U}} \to \mathcal{U}$
- \mathbb{P}^1 -bundle structures: $\pi_i : \widetilde{\mathcal{U}} \to \mathcal{U}_i$ factoring π $(i \in I)$
- \mathbb{P}^1 -bundle structures: $\pi_j : \widetilde{\mathcal{U}} \to \mathcal{U}_j$ not factoring $\pi \ (j \in J)$
- $\sharp(I \cap J) = \rho_{\widetilde{\mathcal{U}}} 1$

Interlude: Grothendieck's theorem

Theorem For the Riemann sphere \mathbb{P}^1 , G reductive, $H \subset G$ Cartan, W Weyl group :

 $\mathrm{H}^{1}(\mathbb{P}^{1},\mathrm{H})/\mathrm{W}\cong\mathrm{H}^{1}(\mathbb{P}^{1},\mathrm{G}).$

- We are interested in ${\sf G}$ semisimple
- A cocycle $\theta \in H^1(\mathbb{P}^1, G)$ provides a G/B-bundle $\widetilde{E} \to \mathbb{P}^1$

A \mathbb{P}^1 -bundle

$$\begin{split} & G = \mathrm{PGl}_2 \\ & H \mapsto \mathrm{choice} \ \mathrm{of} \ C_0, \ C_\infty \\ & \mathrm{corresp.} \ \mathrm{Borel \ subgps.} \ B_0, B_\infty \supset H \\ & \mathrm{invariant} \ e = K_{\mathrm{rel}} \cdot C_0 = \varphi(\theta) \\ & \varphi : H^1(X, H) \to L \cong \mathbb{Z} \\ & e \ \mathrm{even} \ \iff \mathrm{Sl}_2 - \mathrm{bundle} \end{split}$$

A complete flag

 $\begin{array}{l} K_t \mbox{ rel. can. } G/B \to G/P_t \ (\mathbb{P}^1\mbox{-bundles}) \\ \{\alpha_i\} \mbox{ simple roots of } G \end{array}$

$$\begin{split} K_{G/B} &= \sum_{t=1}^{k} b_t K_t \ \mathrm{wher} \\ &\sum_{\beta \in \Phi^+} \beta = \sum_{t=1}^{k} b_t \alpha_t \end{split}$$

A flag bundle

 $H \subset G(Cartan, semisimple)$ $\pi: \mathsf{E} \to \mathbb{P}^1$ flag bundle of type G $H \mapsto \text{choice of } \sharp(W) \text{ sections}$ corresp. Borel subgps. $B_w, w \in W$ one B corresp. to min. section C simple roots α_t , invariants d_t E det. by Dynkin diag tagged by the d_t 's

$$K_{\rm rel} = \sum_{t=1}^{\kappa} b_t K_t$$

2. An extra contraction (I)

- In our situation:

- Take a curve \mathbb{P}^1 of the family \mathcal{M} :

- $s^* \widetilde{\mathcal{U}}$ is a G_I/B_I -bundle over \mathbb{P}^1 : enough to show it is trivial

- (d_1, \ldots, d_k) tag of $s^* \pi^* \widetilde{\mathcal{U}}$: enough to show $d_i = 0$ for $i \in I$

MCPG, 05/26/2016

2. An extra contraction (II)

$$\begin{split} &-s^*\pi^*\widetilde{\mathcal{U}}\ G/B\text{-bundle},\ K_{\widetilde{\pi}}\cdot\widetilde{s}(\mathbb{P}^1)=\sum_{t\in I\cup J}b_td_t\\ &-s^*\widetilde{\mathcal{U}}\ G_I/B_I\text{-bundle},\ K_{\widetilde{\pi}}\cdot\widetilde{s}(\mathbb{P}^1)=\sum_{t\in I}c_td_t\\ &-K_q\cdot s(\mathbb{P}^1)=\sum_{i\in I}(b_i-c_i)d_i+\sum_{j\in J}b_jd_j\\ &-LHS\text{=dim}(q),\ b_i>c_i,\ d_j>0,\ \sum b_j\geq \dim(q)\Rightarrow d_i=0 \end{split}$$

Contents

Remaining cases?

Recognizing symplectic Grassmannians

Theorem (OSWa)

X Fano manifold, $\rho_X = 1$.

 \mathcal{M} an unsplit dominating complete family of rational curves with smooth evaluation morphism, whose tangent map τ is a morphism. Assume τ_x proj. equiv. to $\mathcal{M} \subset \mathbb{P}(\mathcal{H}^0(\mathcal{M}, \mathcal{O}_{\mathcal{M}}(1)))$, for every $x \in X$. Then X is isomorphic to a symplectic Grassmannian.

 $(\mathrm{C}_n(r)): \ M \cong \mathbb{P}\big(\mathcal{O}_{\mathbb{P}^{r-1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{r-1}}(1)^{2n-2r}\big), \ \mathrm{embedded} \ \mathrm{by} \ \mathcal{O}(1)$

THANKS FOR YOUR ATTENTION

Luis E. Solá Conde Dipartimento di Matematica Università di Trento