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1. Nikulin surfaces in low genus

2/45



» We consider complex K3 surfaces S endowed with
o al polarization C of genus g,
o a line bundle M := Os(M) so that 2M ~ N
o and N is the disjoint union of 8 copies of P?.
o <C,M>=0.
» The irreducible components of the moduli have dimension 11,

> their number and lattice theoretic characterization is known. 2

1big and nef
2
Cfr. Garbagnati-Sarti, Sarti-van Geemen and then Huybrechts book
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» We have 2M ~ Ny + - - - + Ng with Ny = P! and N;N; = —25;;.

» N:= Ny +---+ Ng defines the double covering 7’ : &' — S
branched on N and the commutative diagram

/
v,

2L

s

:‘\
%

0 +— Un

s X

v is the contraction of N 3 and S is a minimal K3 surface.

> 7 is the quotient map of a symplectic involution ¢ : S — § branched
exactly on the even set of nodes

{o1 :=v(Ny), ..., og:=v(Ng)} = SingS.

Let E; = ﬂlfl(N;), i=1...8, then E; is an exceptional line on the smooth surface 5’ It turns out that
v’ is the contraction of £y + - - - + Eg
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> Vg 3! integral component whose general point [S,C, M| satisfies
PicS = Z[C] L Ls,

where Ls is generated by M, Os(Ny),...,Os(Ng). *
» Definition:

We will say that (S,C, M) is a Nikulin surface of genus g if its
moduli point is in the above mentioned component.

> Notations:
o Fg = moduli of genus g K3 surfaces (S,C),
o F} := moduli of genus g Nikulin surfaces (S,C, M).

> With a slight abuse we can say that

FY C Fe.

4 . . o .
As an abstract lattice g is known as the Nikulin lattice.



> An intermediate divisor in Fg:
Dy :={[S,Cle Fg /I M€ PicS, <M,C>=0}

so that < M, M >= —4. We assume C ® M~ big and nef.
> For a general [S,C] € D, the element M is unique and

Pic S = Z[C] L ZIM].

> Clearly:
FY CDg CFy.
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> In low genus fé\’ sits in a fascinating system of relations to other
geometric families. We present some done work and some work in
progress about this subject. °

» For g < 10 it seems interesting to study Mukai constructions for a
Nikulin surface.

> The unirationality of fév is known for g < 7 6 We prove here:

5The in progress part jointly with A. Garbagnati

Farkas-Verra to appear in Advances of Math.
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» Theorem (1)
FN is rational. 7

» Theorem (2)
Dg is birational to P x Ps.

» Pg denotes the moduli space of six unordered points of P2.

> Its rationality is an unknown, apparently difficult, problem.

» A natural question: is fé',\’ rational for g < 77

T to appear in K3 surfaces and their moduli Proceedings Schirmonnikoog 2014
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There is a beautiful geometry behind theorems 1 and 2 we want to
discuss during this talk.

Further notations for [S,C, M] € D,, g > 3:
o H :=C(—M) and A :=C(—2M), moreover
o CelC|, He |H| Ac|A|SL

For a general [S,C, M] € ]-"év the map fz X fz defines an embedding
SCPExpPe2

For a general [S,C, M] € D, C and H are very ample as soon as
their genus is > 3.

8 . .
provided these linear systems are not empty.
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> For a general [S,C, M] € F) we have:
o f(S) =S and f(N;) is a line.
o fo(S) =S and fo(N;) is a node.
» The next characterization is useful for g > 8:
Proposition
Let [S,C, M] € Dy, the following conditions are equivalent:
o h9(M) =0 and ®(M®?) =1,
o 3 Nj...Ng disjoint copies of P /| HN; =1, AN; =2 and

Os(Ny +--- + Ng) = M*?

» In particular this characterizes ]—'é'," in Dy for g =0 mod 4.
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» Finally we fix the projective models
ScPe? Scps
respectively defined by H and by C.
> We start with the geometry of ]-;ﬁv forg <T7.

» Omitting g < 5, we give a view on two other nice cases:

g=2=6,7.
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» g =06. Let @ C P* be a smooth quadric, the tangential quadratic
complex of Q is

W= {l € G(1,4) / | is tangent to Q}.
» W is endowed with the quasi-étale double covering
W W

branched on Sing W = the Veronese embedding of P3 in
G(1,4) C P°. One can show that:

» Proposition

A general model S of genus 6 is a linear section of W.

> It follows that FY is unirational.
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» g = 7. Consider the model S C P® defined by H: S is the base
locus of a net of quadrics.

» Choosing N; ... N7 it turns out that C ~ C, := R+ Ny +--- + N5,
with R a rational normal quintic.

> C, is the union of R and seven bisecant lines to it. Starting from a
curve C,, this is in the base locus S of a unique net of quadrics.

» S turns out to be a general Nikulin surface of genus 7 endowed
with an eighth line Ng ~2C, —2H — Ny — -+ — 7.

» Theorem

The moduli space .7?7’\’ of curves C, is rational and has a map of degree 8

foFy — FN°

9Actually f"7N is the moduli of fourtuples (S, C, M, N;) such that (S, C, M) is a Nikulin surface of genus 7

and N; is one of the lines in S C P°. The rationality of ]-_7N is not clear.
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2. Nikulin surfaces of genus 8 and rational normal sextics
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> Let g =8 and [S,C] € Dg be general, we have an embedding
ScPS
with hyperplane sections H ~ C — M of genus 6.
» For g =8 we have (C —2M)? = —2 and (C — 2M)H = 6.
» Proposition

Let A€ |C—2M| and [S,C, M] € FY general. Then A is a smooth,
integral rational normal sextic spanning P®. 10

» Proposition
For a general [S,C, M] € FJl the lines Ny ... Ng are disjoint bisecant
lines to A contained in S.

1
0Then the same is true by semicontinuity on Dg.
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> The Mukai-Brill-Noether theory is known for [X, Ox(1)] € Fs
11.

o CASE 1
o If a smooth H € |Ox(1)| is not trigonal nor biregular to a
plane quintic, then H is generated by quadrics.

o d! H-stable rank 2 vector bundle £ on X such that:
(i) det &2 Ox(1);
(i) h°(E)=5and W'(E) =0 fori>1;
(i) det : A2H(E) — H°(Ops(1)) is surjective.

11
For simplicity we assume that Ox(1) is very ample
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> Let G(1,4) C P%:=P A2 HY(E)* be the Pliicker embedding of the
Grassmannian of lines of PH?(E)*. Let P® = PH%(Ox(1))*.

Then the diagram

po P9

I I

X —f 5 61,9,

commutes, where § := det*, the vertical maps are the inclusions
and f¢ is the embedding defined by &:

x € X — EF C HYE)* € G(1,4).
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Up to obvious identifications we can say that

XCT:=P°nG(1,4) CP°.
Mukai theory in genus 6 says also that:

(iv) X is a quadratic section of T,

Since X is a smooth quadratic section of T, T is an integral
threefold with isolated singularities.

Actually T is a smooth Del Pezzo threefold of degree 5 if X is
sufficiently general.
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» o CASE 2

o Assume H is either trigonal or biregular to a plane quintic.
Then H has Clifford index 1 and it follows that:

o there exists an integral curve D C X such that either DH =3
and D?> =0 or DH =5 and D? = 2.

> A general genus 8 Nikulin surface occurs in case (1), not in (2).

» Proposition

Let S C P® be a general Nikulin surface of genus 8 embedded by fy,.
Then S is a quadratic section of a threefold T as above. 2

12PROOF Pic S is the orthogonal sum of rank 9 ZL @ LLg, where LLg is the Nikulin lattice generated by
Og(M), Og(Ny) . ..Og(Ng). A standard computation we omit, shows that no divisor D exists such that D? = 0

and DH = 3 or D? = 2 and DH = 5. This excludes case (2).
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» Let Aand S C T =P°®nN G(1,4) C P? as above. Under the
previous generality assumptions we study the restriction

Ea=ER0O,

of the Mukai bundle £ and discuss the possible cases. Of course we
have €4 = Op1(m) & Op:(n) with m+ n = 6.

Theorem
One has £4 = Op1(3) @ Op1(3).
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> Now we consider P4 := P&} and the tautological map

ua: Py — P7:= PHY(EQ)".

» Then
R = UA(]PA).

is a rational normal scroll of degree 6.

» The next standard exact sequence will be crucial:

02 &(-A)=E—=Ex—0.
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» The associated long exact sequence is the following:

0 — H(E) — H(Ea) & HY(E(~A)) — 0.

» In particular one has

o hO(g) =5,
o h%(E4) =8,
o h'(E(—A)) =3. 13

» The coboundary map 94 : H%(Ea) — HY(E(—A)) defines a plane

P4 :=PIm 0 C P".

13PROOF Since £(—A) is H-stable and H(H — 2A) < 0, it follows h%(£(—A)) = 0. Furthermore we know
that h(£) = 0 for i > 1 and we have h'(£4) = 0 because m, n > 0. This implies the“statement.



> Let P*:= PH?(£)* and Px := PE*. Dualizing the sequence and
projectivizing we define the linear projection of center Pj4:

aa:PT = P*:=PH(E)".

» Furthermore we have the commutative diagram
P 4 pt
UAT UST
Py, — — Py

where the vertical arrows are the tautological maps. One expects
that aa(R) has exactly six apparent double points.

> This is true generically for [S,C, M] € Ds. Not along the Nikulin
locus FY'.
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» Let G(1,7) be the Grassmannian of lines of PH(£4)*. Then the
projection a4 : P7 — P* defines a map

M G(1,7) — G(1,4).

defined by the assignement | — aa(/), 1€ G(1,7).

» The next diagram is commutative:

G(1,7) —— G(1,4)

fea T fe T
A

—_— S
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3. Nikulin surfaces of genus 8 and symmetric cubic threefolds
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» A symmetric cubic threefold is a cubic hypersurface
V := {det(a;) = 0} C P*,
where aj; = aj; are linear forms.

» We assume dim < a11...as33 >=5 so that
V = Sec B,
B a rational normal quartic curve.

» The family of bisecant lines to B is a 3-Veronese embedding
W c G(1,4)

embedded as a congruence of class (3, 6).
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> Since &£, is balanced then P4 = P! x P! and
R := ua(Pa) C P = PHY(E4)*

is the image of |Op1yp1(1, 3)].
» R is a rational normal sextic scroll: we fix it once at all.

> Restricting to R the top arrow of the previous diagram

P’ XA p4

PA—i>Px
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> We obtain a linear projection
aa: R — P
> «ap is a finite morphism of degree 1 onto its image. Let
ZCR
be the subscheme of points where a4 is not an embedding. Then
0(Z)=12
by double point formula.

» In other words R has six apparent ordinary double points if ca is a
sufficiently general projection in P%.
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This is actually not the case for simple geometric reasons:

A has 8 bisecant lines Ny ... Ng C S C G(1,4) in the Nikulin case,

aa(R) is the projection in P* of the universal line over A. This is
Pa:={(x,)eP*xA/xecl}cP*xG(1,4),

N; parametrizes a pencil of lines in P* of center say n;,

the fibre of P4 at N; N A is the disjoint union of two lines in P*
parametrized by N;.

Hence:
Singa(R) D {ny...ng} !
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» Theorem
o Sing aa(R) is a rational normal quartic B,
o aa(R) is a degenerated K3 surface of genus 4:

o let V = Sec B then

OKA(R) = Qﬂ \/7 Q S IIB/P4(2)|'
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> So far A is defined by a special embedding
aa: Pt = G(1,4),

as for every rational normal sextic

<A>NG(L,4)=T.

» But A= W N T, where W = Bl embedded with class (3,6).

» More geometry of the special embeddings o : P! — A C G(1,4):

31/45



v

Special feature: A has a 1-dimensional family of bisecant lines

Ex = {lines N such that N C< A > NG(1,4)}.

v

The family E4 is an elliptic curve embedded in B x B.14

v

A defines another degenerated K3 surface of genus 6:

Sa=|JN, N € Ea

v

Actually Sa € |Za,7(2)], in particular

Sing, = A.

14 . . . .
It is embedded as a correspondence of type (2,2) in B X B: for each p € B there are two bisecant lines to
B. This defines the correspondence.
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> The family of special embeddings vy modulo Aut G(1,4) is
|IB/V(2)|/AUt B = |OB[2](2)‘/Aut p!
15 that is a rational surface we will denote by

X,

» The considered Nikulin surface S belongs to |Z4,7(2)|.

> A general S’ € |Z,7(2)| is a smooth Nikulin surface.
> Proof: S=Q'NT and

Q -Sa=2A+ Nj+ -+ Ng,

N! a bisecant line to A.

15|IB/V(2)\ is naturally biregular to \OB[Z](Z)\. B is embedded in B2 as the diagonal and the action is the
action of PGL(2) = Aut B on Bl
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> Let a € P® :=[Zg,v(2)|, we denote by o : P* — G(1,4) the
corresponding sextic embedding and put A = «(P?):

» From the previous remarks and construction one has a P°-bundle
7:P—= P> (19

with fibre at « the linear system of Nikulin surfaces [Z4,7(2)|.

16
onto a non empty open set of
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> With some more elaboration:
o The natural map P/Aut B — F¥ is birational.
o P/Aut B is birational to P x Y.

» We have sketched the proof that

Theorem
The moduli space of genus 8 Nikulin surfaces is rational.
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» The Mukai construction for S: Let
f: T —P°
defined by |Za(2)].
» Let T be the birational image of f, then

T =P°NG(1L,5).

> f contracts S4 to a copy of E4 spanning a hyperplane and

Sing T = Eqa.
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Thanks for the attention!



