Geometry of genus 8 Nikulin surfaces and rationality of moduli

Mediterranean Complex Projective Geometry, Carry Le Rouet, May 24-27 2016

Alessandro Verra, Universitá Roma Tre

1. Nikulin surfaces in low genus

▶ We consider complex K3 surfaces S endowed with

• a^1 polarization C of genus g,

- a line bundle $\mathcal{M} := \mathcal{O}_{\mathcal{S}}(M)$ so that $2M \sim N$
- and N is the disjoint union of 8 copies of \mathbf{P}^1 .

 $\circ \ < \mathcal{C}, \mathcal{M} >= 0.$

- The irreducible components of the moduli have dimension 11,
- their number and lattice theoretic characterization is known.²

¹ big and nef

²Cfr. Garbagnati-Sarti, Sarti-van Geemen and then Huybrechts book 🛛 🖬 🗛 🖅 🖉 🖉 ५ 🔮 🖉 ५ 🔮 🖉 ५ २

- We have $2M \sim N_1 + \cdots + N_8$ with $N_k = \mathbf{P}^1$ and $N_i N_j = -2\delta_{ij}$.
- ► $N := N_1 + \cdots + N_8$ defines the double covering $\pi' : \tilde{S}' \to S$ branched on N and the commutative diagram

u is the contraction of N ³ and \tilde{S} is a minimal K3 surface.

• π is the quotient map of a symplectic involution $\iota : \tilde{S} \to \tilde{S}$ branched exactly on the even set of nodes

$$\{o_1 := \nu(N_1), \ldots, o_8 := \nu(N_8)\} = \operatorname{Sing} \overline{S}$$

³Let $E_i = \pi'^{-1}(N_i), i = 1 \dots 8$, then E_i is an exceptional line on the smooth surface \tilde{S}' . It turns out that ν' is the contraction of $E_1 + \dots + E_8$

▶ $\forall g \exists !$ integral component whose general point [S, C, M] satisfies

$$\mathsf{Pic}\, S = \mathbb{Z}[\mathcal{C}] \perp \mathbb{L}_S,$$

where \mathbb{L}_{S} is generated by $\mathcal{M}, \mathcal{O}_{S}(N_{1}), \dots, \mathcal{O}_{S}(N_{8})$.⁴

Definition:

We will say that (S, C, M) is a *Nikulin surface of genus g* if its moduli point is in the above mentioned component.

▶ Notations:

 $\circ \ \mathcal{F}_g := \mathrm{moduli} \ \mathrm{of} \ \mathrm{genus} \ g \ \mathrm{K3} \ \mathrm{surfaces} \ (S, \mathcal{C}),$

• $\mathcal{F}_{g}^{N} :=$ moduli of genus g Nikulin surfaces $(S, \mathcal{C}, \mathcal{M})$.

▶ With a slight abuse we can say that

$$\mathcal{F}_g^N \subset \mathcal{F}_g.$$

 $^{^4\}text{As}$ an abstract lattice \mathbb{L}_5 is known as the Nikulin lattice.

► Clearly:

$$\mathcal{F}_{g}^{N} \subset \mathcal{D}_{g} \subset \mathcal{F}_{g}.$$

◆□> ◆圖> ◆臣> ◆臣> 三臣 - のへ⊙

- ► In low genus *F^N_g* sits in a fascinating system of relations to other geometric families. We present some done work and some work in progress about this subject. ⁵
- For g ≤ 10 it seems interesting to study Mukai constructions for a Nikulin surface.
- The unirationality of \mathcal{F}_g^N is known for $g \leq 7^6$ We prove here:

⁵The in progress part jointly with A. Garbagnati

⁶Farkas-Verra to appear in Advances of Math.

► Theorem (1)

 \mathcal{F}_8^N is rational. ⁷

► Theorem (2)

\mathcal{D}_8 is birational to $\mathbf{P}^{14} \times \mathcal{P}_6$.

- \mathcal{P}_6 denotes the moduli space of six unordered points of \mathbf{P}^2 .
- Its rationality is an unknown, apparently difficult, problem.
- A natural question: is \mathcal{F}_g^N rational for $g \leq 7$?

⁷— to appear in K3 surfaces and their moduli Proceedings Schirmonnikoog 2014 🗇 🔸 🛓 🗼 🛓 🔗 ۹. 🤊

- There is a beautiful geometry behind theorems 1 and 2 we want to discuss during this talk.
- Further notations for $[S, C, M] \in D_g$, $g \ge 3$:

$$\circ \ \mathcal{H} := \mathcal{C}(-M)$$
 and $\mathcal{A} := \mathcal{C}(-2M)$, moreover

$$\circ \quad C \in |\mathcal{C}|, \ H \in |\mathcal{H}|, \ A \in |\mathcal{A}|, \ ^8.$$

- ▶ For a general $[S, C, M] \in \mathcal{F}_g^N$ the map $f_C \times f_H$ defines an embedding $S \subset \mathbf{P}^g \times \mathbf{P}^{g-2}$.
- For a general [S, C, M] ∈ D_g, C and H are very ample as soon as their genus is ≥ 3.

^oprovided these linear systems are not empty.

▶ For a general $[S, C, M] \in \mathcal{F}_g^N$ we have:

•
$$f_{\mathcal{H}}(S) = S$$
 and $f_{\mathcal{H}}(N_i)$ is a line.

•
$$f_{\mathcal{C}}(S) = \overline{S}$$
 and $f_{\mathcal{C}}(N_i)$ is a node.

• The next characterization is useful for $g \ge 8$:

Proposition

Let $[S, C, \mathcal{M}] \in \mathcal{D}_g$, the following conditions are equivalent: $\circ h^0(\mathcal{M}) = 0$ and $h^0(\mathcal{M}^{\otimes 2}) = 1$, $\circ \exists N_1 \dots N_8$ disjoint copies of $\mathbf{P}^1 / HN_i = 1$, $AN_i = 2$ and $\mathcal{O}_S(N_1 + \dots + N_8) \cong \mathcal{M}^{\otimes 2}$

▶ In particular this characterizes \mathcal{F}_g^N in \mathcal{D}_g for $g \equiv 0 \mod 4$.

 Finally we fix the projective models

$$S \subset \mathbf{P}^{g-2} , \ \overline{S} \subset \mathbf{P}^{g}$$

respectively defined by \mathcal{H} and by \mathcal{C} .

• We start with the geometry of \mathcal{F}_g^N for $g \leq 7$.

• Omitting $g \leq 5$, we give a view on two other nice cases:

$$g = 6, 7.$$

オロト オポト オヨト オヨト ヨー ろくで

g = 6. Let Q ⊂ P⁴ be a smooth quadric, the tangential quadratic complex of Q is

$$W := \{I \in G(1,4) / I \text{ is tangent to } Q\}.$$

W is endowed with the quasi-étale double covering

$$\pi: \tilde{W} \to W$$

branched on Sing W = the Veronese embedding of \mathbf{P}^3 in $G(1,4) \subset \mathbf{P}^9$. One can show that:

Proposition

A general model \overline{S} of genus 6 is a linear section of W.

• It follows that \mathcal{F}_6^N is unirational.

- g = 7. Consider the model S ⊂ P⁵ defined by H: S is the base locus of a net of quadrics.
- Choosing $N_1 \dots N_7$ it turns out that $C \sim C_o := R + N_1 + \dots + N_7$, with R a rational normal quintic.
- C_o is the union of R and seven bisecant lines to it. Starting from a curve C_o, this is in the base locus S of a unique net of quadrics.
- ▶ *S* turns out to be a *general* Nikulin surface of genus 7 endowed with an eighth line $N_8 \sim 2C_o 2H N_1 \cdots N_7$.

Theorem

The moduli space $\tilde{\mathcal{F}}_7^N$ of curves C_o is rational and has a map of degree 8

$$f: \tilde{\mathcal{F}}_7^N \to \mathcal{F}_7^N.^9$$

⁹Actually $\tilde{\mathcal{F}}_{7}^{N}$ is the moduli of fourtuples (S, C, \mathcal{M}, N_i) such that (S, C, \mathcal{M}) is a Nikulin surface of genus 7 and N_i is one of the lines in $S \subset \mathbf{P}^5$. The rationality of \mathcal{F}_{7}^{N} is not clear.

2. Nikulin surfaces of genus 8 and rational normal sextics

• Let g = 8 and $[S, C] \in D_8$ be general, we have an embedding

$$S \subset \mathbf{P}^6$$

with hyperplane sections $H \sim C - M$ of genus 6.

For
$$g = 8$$
 we have $(C - 2M)^2 = -2$ and $(C - 2M)H = 6$.

Proposition

h

Let $A \in |C - 2M|$ and $[S, C, M] \in \mathcal{F}_8^N$ general. Then A is a smooth, integral rational normal sextic spanning \mathbf{P}^6 .¹⁰

Proposition

For a general $[S, C, M] \in \mathcal{F}_8^N$ the lines $N_1 \dots N_8$ are disjoint bisecant lines to A contained in S.

¹⁰ Then the same is true by semicontinuity on \mathcal{D}_8 .

- ► The Mukai-Brill-Noether theory is known for $[X, \mathcal{O}_X(1)] \in \mathcal{F}_6$
 - CASE 1:
 - If a smooth $H \in |\mathcal{O}_X(1)|$ is not trigonal nor biregular to a plane quintic, then H is generated by quadrics.
 - \exists ! *H*-stable rank 2 vector bundle \mathcal{E} on *X* such that:

(i) det
$$\mathcal{E} \cong \mathcal{O}_X(1)$$
;
(ii) $h^0(\mathcal{E}) = 5$ and $h^i(\mathcal{E}) = 0$ for $i \ge 1$;
(iii) det : $\wedge^2 H^0(\mathcal{E}) \to H^0(\mathcal{O}_{P^6}(1))$ is surjective.

 $^{^{11}}$ For simplicity we assume that $\mathcal{O}_X(1)$ is very ample

Let G(1,4) ⊂ P⁹ := P ∧² H⁰(E)* be the Plücker embedding of the Grassmannian of lines of PH⁰(E)*. Let P⁶ = PH⁰(O_X(1))*.

Then the diagram

$$\begin{array}{ccc} \mathbf{P}^6 & \stackrel{\delta}{\longrightarrow} & \mathbf{P}^9 \\ \uparrow & & \uparrow \\ X & \stackrel{f_{\mathcal{E}}}{\longrightarrow} & G(1,4) \end{array}$$

commutes, where $\delta := det^*$, the vertical maps are the inclusions and $f_{\mathcal{E}}$ is the embedding defined by \mathcal{E} :

$$x \in X \longrightarrow \mathcal{E}_x^* \subset H^0(\mathcal{E})^* \in G(1,4).$$

Up to obvious identifications we can say that

$$X \subset T := \mathbf{P}^6 \cap G(1,4) \subset \mathbf{P}^9.$$

Mukai theory in genus 6 says also that:

(iv) X is a quadratic section of T,

- Since X is a smooth quadratic section of T, T is an integral threefold with isolated singularities.
- Actually T is a smooth Del Pezzo threefold of degree 5 if X is sufficiently general.

• CASE 2:

- Assume *H* is either trigonal or biregular to a plane quintic. Then *H* has Clifford index 1 and it follows that:
- there exists an integral curve $D \subset X$ such that either DH = 3and $D^2 = 0$ or DH = 5 and $D^2 = 2$.
- ▶ A general genus 8 Nikulin surface occurs in case (1), not in (2).

Proposition

Let $S \subset \mathbf{P}^6$ be a general Nikulin surface of genus 8 embedded by $f_{\mathcal{H}}$. Then S is a quadratic section of a threefold T as above.¹²

¹²PROOF Pic *S* is the orthogonal sum of rank 9 $\mathbb{ZL} \oplus \mathbb{L}_S$, where \mathbb{L}_S is the Nikulin lattice generated by $\mathcal{O}_S(M), \mathcal{O}_S(N_1) \dots \mathcal{O}_S(N_8)$. A standard computation we omit, shows that no divisor *D* exists such that $D^2 = 0$ and DH = 3 or $D^2 = 2$ and DH = 5. This excludes case (2).

Let A and S ⊂ T = P⁶ ∩ G(1,4) ⊂ P⁹ as above. Under the previous generality assumptions we study the restriction

$$\mathcal{E}_A := \mathcal{E} \otimes \mathcal{O}_A$$

of the Mukai bundle \mathcal{E} and discuss the possible cases. Of course we have $\mathcal{E}_A = \mathcal{O}_{\mathbf{P}^1}(m) \oplus \mathcal{O}_{\mathbf{P}^1}(n)$ with m + n = 6.

Theorem

One has $\mathcal{E}_A \cong \mathcal{O}_{\mathbf{P}^1}(3) \oplus \mathcal{O}_{\mathbf{P}^1}(3)$.

 \blacktriangleright Now we consider $\mathbb{P}_{\mathcal{A}} := \mathbf{P} \mathcal{E}_{\mathcal{A}}^*$ and the tautological map

$$u_A: \mathbb{P}_A \to \mathbf{P}^7 := \mathbf{P} H^0(\mathcal{E}_A)^*.$$

Then

$$R:=u_A(\mathbb{P}_A).$$

is a rational normal scroll of degree 6.

The next standard exact sequence will be crucial:

$$0
ightarrow \mathcal{E}(-A)
ightarrow \mathcal{E}
ightarrow \mathcal{E}_A
ightarrow 0.$$

The associated long exact sequence is the following:

$$0 \to H^0(\mathcal{E}) \to H^0(\mathcal{E}_A) \stackrel{\partial_A}{\to} H^1(\mathcal{E}(-A)) \to 0.$$

In particular one has

•
$$h^{0}(\mathcal{E}) = 5,$$

• $h^{0}(\mathcal{E}_{A}) = 8,$
• $h^{1}(\mathcal{E}(-A)) = 3.$ ¹⁵

▶ The coboundary map $\partial_A : H^0(\mathcal{E}_A) \to H^1(\mathcal{E}(-A))$ defines a plane

$$P_A := \mathbf{P} Im \ \partial_A^* \subset \mathbf{P}^7.$$

¹³PROOF Since $\mathcal{E}(-A)$ is *H*-stable and H(H - 2A) < 0, it follows $h^0(\mathcal{E}(-A)) = 0$. Furthermore we know that $h^i(\mathcal{E}) = 0$ for $i \ge 1$ and we have $h^1(\mathcal{E}_A) = 0$ because $m, n \ge 0$. This implies the statements A = 0.

Let P⁴ := PH⁰(E)^{*} and P_X := PE^{*}. Dualizing the sequence and projectivizing we define the linear projection of center P_A:

$$\alpha_A: \mathbf{P}^7 \to \mathbf{P}^4 := \mathbf{P}H^0(\mathcal{E})^*.$$

Furthermore we have the commutative diagram

where the vertical arrows are the tautological maps. One expects that $\alpha_A(R)$ has exactly six apparent double points.

This is true generically for [S, C, M] ∈ D₈. Not along the Nikulin locus F^N₈.

▶ Let G(1,7) be the Grassmannian of lines of $\mathbf{P}H^0(\mathcal{E}_A)^*$. Then the projection $\alpha_A : \mathbf{P}^7 \to \mathbf{P}^4$ defines a map

$$\lambda_A: G(1,7) \rightarrow G(1,4).$$

defined by the assignement $I \longrightarrow \alpha_A(I), I \in G(1,7).$

The next diagram is commutative:

$$egin{array}{rll} G(1,7) & \longrightarrow & G(1,4) \ f_{\mathcal{E}_A} \uparrow & f_{\mathcal{E}} \uparrow \ A & \stackrel{i}{\longrightarrow} & S \end{array}$$

3. Nikulin surfaces of genus 8 and symmetric cubic threefolds

A symmetric cubic threefold is a cubic hypersurface

$$V:=\{det(a_{ij})=0\}\subset \mathbf{P}^4,$$

where $a_{ij} = a_{ji}$ are linear forms.

• We assume dim $\langle a_{11} \dots a_{33} \rangle = 5$ so that

$$V = Sec B$$
,

B a rational normal quartic curve.

The family of bisecant lines to B is a 3-Veronese embedding

$$W \subset G(1,4)$$

embedded as a congruence of class (3, 6).

• Since \mathcal{E}_A is balanced then $\mathbb{P}_A = \mathbf{P}^1 \times \mathbf{P}^1$ and

$$R:=u_{\mathcal{A}}(\mathbb{P}_{\mathcal{A}})\subset \mathbf{P}^7=\mathbf{P}\mathcal{H}^0(\mathcal{E}_{\mathcal{A}})^*$$

is the image of $|\mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(1,3)|$.

R is a rational normal sextic scroll: we fix it once at all.

Restricting to R the top arrow of the previous diagram

We obtain a linear projection

$$\alpha_A: R \to \mathbf{P}^4.$$

• α_A is a finite morphism of degree 1 onto its image. Let

 $Z \subset R$

be the subscheme of points where α_A is not an embedding. Then

$$\ell(Z) = 12$$

by double point formula.

In other words R has six apparent ordinary double points if α_A is a sufficiently general projection in P⁴.

- This is actually not the case for simple geometric reasons:
- ▶ A has 8 bisecant lines $N_1 \dots N_8 \subset S \subset G(1,4)$ in the Nikulin case,
- $\alpha_A(R)$ is the projection in \mathbf{P}^4 of the universal line over A. This is $\mathbb{P}_A := \{(x, l) \in \mathbf{P}^4 \times A \mid x \in l\} \subset \mathbf{P}^4 \times G(1, 4),$
- N_i parametrizes a pencil of lines in \mathbf{P}^4 of center say n_i ,
- ► the fibre of P_A at N_i ∩ A is the disjoint union of two lines in P⁴ parametrized by N_i.
- Hence:

$$\operatorname{Sing} \alpha(R) \supseteq \{n_1 \dots n_8\} \; !$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ シック

► Theorem

- Sing $\alpha_A(R)$ is a rational normal quartic B,
- $\alpha_A(R)$ is a degenerated K3 surface of genus 4:
- \circ let V = Sec B then

$$lpha_{\mathcal{A}}(\mathcal{R}) = \mathcal{Q} \cap \mathcal{V}, \ \ \mathcal{Q} \in |\mathcal{I}_{\mathcal{B}/\mathbf{P}^4}(2)|.$$

So far A is defined by a special embedding

$$\alpha_{\mathcal{A}}: \mathbf{P}^1 \to G(1, 4),$$

as for every rational normal sextic

$$\langle A \rangle \cap G(1,4) = T.$$

- But $A = W \cap T$, where $W = B^{[2]}$ embedded with class (3,6).
- More geometry of the special embeddings α : P¹ → A ⊂ G(1,4):

Special feature: A has a 1-dimensional family of bisecant lines

 $E_A := \{ \text{lines } N \text{ such that } N \subset <A > \cap G(1,4) \}.$

- The family E_A is an elliptic curve embedded in $B \times B$.¹⁴
- ► A defines another degenerated K3 surface of genus 6:

$$S_A = \bigcup N, \ N \in E_A.$$

• Actually $S_A \in |\mathcal{I}_{A/T}(2)|$, in particular

$$Sing_A = A.$$

¹⁴ It is embedded as a correspondence of type (2,2) in $B \times B$: for each $p \in B$ there are two bisecant lines to B. This defines the correspondence.

• The family of special embeddings α_A modulo Aut G(1,4) is

$$|\mathcal{I}_{B/V}(2)|/Aut B = |\mathcal{O}_{B^{[2]}}(2)|/Aut \mathbf{P}^1$$

¹⁵ that is a rational surface we will denote by

Σ.

- The considered Nikulin surface S belongs to $|\mathcal{I}_{A/T}(2)|$.
- ▶ A general $S' \in |\mathcal{I}_{A/T}(2)|$ is a smooth Nikulin surface.
- Proof: $S' = Q' \cap T$ and

$$Q'\cdot S_A=2A+N_1'+\cdots+N_8',$$

 N'_i a bisecant line to A.

¹⁵ $|\mathcal{I}_{B/V}(2)|$ is naturally biregular to $|\mathcal{O}_{B^{[2]}}(2)|$. *B* is embedded in $B^{[2]}$ as the diagonal and the action is the action of PGL(2) = Aut B on $B^{[2]}$.

- ▶ Let $\alpha \in \mathbf{P}^5 := |\mathcal{I}_{B/V}(2)|$, we denote by $\alpha : \mathbf{P}^1 \to G(1, 4)$ the corresponding sextic embedding and put $A = \alpha(\mathbf{P}^1)$:
- ▶ From the previous remarks and construction one has a **P**⁹-bundle

$$\pi: \mathbb{P} \to \mathbf{P}^5$$
 (16)

with fibre at α the linear system of Nikulin surfaces $|\mathcal{I}_{A/T}(2)|$.

With some more elaboration:

• The natural map $\mathbb{P}/Aut \ B \to \mathcal{F}_8^N$ is birational.

• $\mathbb{P}/Aut \ B$ is birational to $\mathbf{P}^9 \times \Sigma$.

We have sketched the proof that

Theorem

The moduli space of genus 8 Nikulin surfaces is rational.

• The Mukai construction for \overline{S} : Let

$$f: T \to \mathbf{P}^9$$
,

defined by $|\mathcal{I}_A(2)|$.

• Let \overline{T} be the birational image of f, then

 $\overline{T} = \mathbf{P}^9 \cap G(1,5).$

• f contracts S_A to a copy of E_A spanning a hyperplane and

Sing
$$\overline{T} = E_A$$
.

Thanks for the attention!